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Abstract 

To improve the indoor environment conditions in pig buildings, an innovative prediction model with three 
layers using long short-term memory (LSTM) was developed to forecast indoor environment conditions 
including five factors of the gas concentrations of ammonia (NH3), carbon dioxygen (CO2) and hydrogen 
sulfide (H2S), and thermal environment conditions of air temperature (PLS T) and relative humidity (PLS RH). 
In the LSTM model, there are 5 inputs and outputs representing for the five environmental factors in history 
and the next time step, respectively. The auxiliary influenced factors with high correlations with the outputs 
were selected to attend the calculation in fully connected layer. 53 days collected data in wintertime and 
summertime were used for the model training and testing. It was shown that the model with hyper- 
parameters of 400 neurons, 1 time lag, and 0.008 learning rate has optimal performances both in 
summertime and wintertime. Compared with other two different types of models of ANFIS and MLR, the 
LSTM model has the best performances of RMSE, MAPE and R2 for the concentrations of NH3 in wintertime, 
H2S in summertime, PLS T and PLS RH both in summertime and wintertime. 

Keywords: thermal environment conditions, gas concentrations, environment control, pig building, long 
short-term memory. 

 

Introduction 

In intensive livestock productions, the indoor environment conditions are key factors for livestock (Hay, 
Morton et al., 2016) because of their great influence on the animal’s growth, welfare, health, feed-to-meat 
conversion, and reproduction. The major environmental factors in pig living space include air temperature 
and humidity, gases of ammonia (NH3), carbon dioxide (CO2) and hydrogen sulfide (H2S). 

To improve the environment conditions and meet the specific environmental needs of pigs in different stages 
and areas, in the past decades, some field experimentation and simulation-or-modelling-based research on 
indoor environment control in animal buildings were conducted. The field experiments were carried out on 
ventilations (Kim, Ko et al., 2007, Chen, Lim et al., 2014, Ni, Kaelin et al., 2016), temperature and humidity 
(Samer, Loebsin et al., 2011, Hempel, König et al., 2018), gases concentration and emission (Saha, Zhang et 
al., 2010, Zong, Zhang et al., 2014, Zong, Li et al., 2015), etc. However, in practice, due to the drawback caused 
by the limitations of practical measurement sensors’ position and number, time delay of the control devices, 
etc., it is not easy to achieve the desired environment conditions in time. 
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As recent evolutions in sensor technology and big data have provided continuously expanding resources for 
data collection. Many data-driven prediction methods, like linear or nonlinear method, numerical method like 
Computational fluid dynamics (CFD), especially neuron networks such as Artificial Neural Network (ANN), 
Elman, Backpropagation (BP) and Adaptive-Network-based Fuzzy Inference Systems (ANFIS) have been used 
by scholars to forecast the environment conditions in animal buildings. However, as large volume of input 
data increased, most of the neural networks in these models were rarely based on multilayer neural networks 
which were not specifically designed for time series model. 

Long and short-Term memory (LSTM) is a deep learning method that performs very well in dealing with the 
problems of the time series data (Gers, Schmidhuber et al., 2000). LSTM provides new ideas for solving the 
problems of predictions in air pollution, building energy, traffic flow and travelling time, recognition and 
classifications. Good performances of these predictions for large data volume using LSTM have exhibited the 
full potential of artificial neural networks. However, to the best of the authors’ knowledge, attempts have 
not yet been found to use LSTM algorithm considering other influenced factors to predict multiple time 
series of indoor environment factors, such as air temperature, humidity, and harmful gas concentrations of 
NH3, CO2 and H2S, for livestock building in research papers. 

The object of this study is to address the aforementioned limitations and propose a novel model using the 
deep learning algorithm of LSTM to improve the prediction of multiple indoor environment factors and 
provide optimal control strategies for the indoor environment management in pig buildings. 

 

Pig building and measurement data 

Building description 

Measurement data in this study were obtained in a 12-room swine environmental research building at Purdue 
University, USA. Each room is consisted of a 11.0 m × 6.1 m × 2.7 m (L × W × H) pig living space (PLS) and two 
1.8-m deep manure pits (Liu, Ni et al., 2017). The PLS and the manure pits are separated with a slatted 
concrete floor (Figure 1). The PLS has a capacity of housing 60 finishing pigs in two rows of 3–6 pens. 
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Figure 1: Cross-sectional east-side view of the swine building. 
 

A propane heater (Model Guardian 60, L.B. White Co. Onalaska, WI, USA) was installed in each room for 
heating when the room temperature was too low for piglets in winter. Four ventilation fans: two pit fans of 
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250-mm diameter and two wall fans, one of 356-mm and another of 508-mm diameters were equipped for 
each room. Heating and ventilation were independently controlled with a Fancom controller (Model FCTC, 
Vancom BV, Panningen, The Netherlands) in each room. Fresh air entered into the building from two air inlets 
on top of the east and west doors, supplied to each room from ceiling and hallway inlets. 

The building was equipped with a continuous environmental monitoring system to measure temperature, 
relative humidity, ventilation, and concentrations of different gases. 

Data selection 

Several research projects on animal environment have been conducted in the past years in the swine 
building. Data from Room 2 in summertime from August 28 to September 30, 2015 and from Room 4 in 
wintertime from December 24, 2015 to January 13, 2016 were selected as the input data and test data of the 
prediction model in this study. During these two periods, the pig numbers in Room 2 and Room 4 were 
64−146 and 60, respectively; the total pig weights were 1942 – 4157 kg in Room 2 and 6212 − 7719 kg in Room 
4. 

Measurement data, including temperature, relative humidity, ventilation, gas concentrations, and pig 
activities, at 1-min resolution were averaged to hourly data and were used for model training, and model test 
and validation. 

LSTM Model 

Networks of LSTM have a memory block connected through layers that consists of a set of memory blocks, 
and at the same time forgetting irrelevant information, which mimics the way in which human selectively 
remember details from the past. 

Parameter selection: With the consideration of the outputs have different correlations with the factors, two 
prediction categories are established: (1) predictions for gas concentrations of NH3, CO2 and H2S; (2) 
predictions for indoor thermal environment of PLS T and PLS RH. The factors of Pit NH3, Pit CO2, Pit H2S, PLS 
T, PLS RH, Out RH, Out T, Act, Wt and Vent are selected as the auxiliary input variables for category (1) to 
attend the forecasting of the room gas concentrations of NH3, CO2 and H2S; the factors of Out RH, Out T, 
Act, Wt and Vent were selected as the auxiliary input variables for category (2) to attend the prediction of 
the indoor thermal environment of PLS T and PLS RH. 

Model structure: The model consists of three layers: sequence input layer, hidden layer and output layer. The 
hidden layer includes LSTM layer, fully connected layer, and regression layer (Figure 2). 

The history sequence data of concentrations of NH3, CO2 and H2S, PLS T and PLS RH were transformed into 
the input times series named x1, x2, ……, x5 , the normalized auxiliary data as the influencing factors on each 
input variables of x1, x2, ……, x5 attending the calculation of the fully connected layer in the hidden layer. The 
dimensions of the input time series are 5×t, t is the length of the time series. 



 
 

Figure 2: Model structure. 
 

Three layers of LSTM, fully connected and regression are constructed in the hidden layer to achieve a better 
learning effect. The LSTM layer learns long-term dependencies between time steps in time series and 
sequence data to performs some interactions that help to improve gradient flow over long sequences. 

The output layer is responsible for the demoralization of the output values O1, O2, ……, O5 getting from the 
hidden layer into predictions y1, y2, ……, y5 of the same format as the observations representing for 
predictions of the concentrations of NH3, CO2 and H2S, PLS T and PLS RH. 

The same model structure is used for the two prediction categories of (1) and (2), the difference lies in the 
auxiliary factors according to different correlations with the outputs. 

Model development: The time sequence data are divided into two sets: training data set and testing data set. 
The training data are used for LSTM model training, and the testing data are used for testing the performance 
of the model. In this study, the total 1320 observations sampled from Aug. 28 to Sept. 30, 2015 (representing 
for summertime) and Dec. 24 to 31, 2015 and Jan. 1 to 13, 2016 (representing for wintertime), were divided 
into four data sets according to different seasons. The sampled data in the last two days were used as the 
testing data, and others were used for training data. 

The computation of data training and testing for the LSTM model was conducted using the Matlab.In the 
LSTM layer, the initial network parameters are set: the number of hidden neurons is 200, the state activation 
function is hyperbolic tangent (tanh), the gate activation function is sigmod, the training method is Adam 
(adaptive moment estimation) optimizer, the maximum epochs are 250, the initial learning rate is 0.005. 
After training, the LSTM prediction model for multiple environment factors will be obtained. 

Model evaluation: The performances of the LSTM model were evaluated with statistical analysis, such as root 
mean squared error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). 
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Results and discussion 

Prediction result of the LSTM model 

The prediction model with learning rate of 0.008, neurons of 400, and time lag of 1 (for PLS T, PLS RH and 
concentration of NH3 and CO2) and 2 (for H2S) was built, in this paper, to increase the model's accuracy and 
useful features learning. 

Comparison with different models 

In order to evaluate the availability of the proposed deep learning algorithm of LSTM model, other two 
methods of adaptive neural fuzzy inference system (ANFIS) (Takagi and Sugeno 1985) and multiple linear 
regression (MLR) are also employed to forecast PLS temperature, PLS relative humidity, concentrations of 
NH3, CO2 and H2S using the same dataset. 

The overall variation trends of the predictions with the three methods both in winter and summer are 
consistent with the observations (Figure 3). Also, they are coincided with the measured data that the 
concentrations of NH3, CO2 and H2S in summer are lower than those in winter (Figure 3 A, B and C), and the 
PLS T and PLS RH in summer are higher than those in winter (Figure 3 D and E). 
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Figure 3: Comparisons between the observations and predictions with method of LSTM, ANFIS and MLR in 
summertime and wintertime. A, B and C: Concentrations of NH3, CO2 and H2S, respectively; D: PLS temperature; E: 
PLS relative humidity. 

 

The performances of RMSE, MAPE and R2 using the LSTM methods for the predictions of NH3 in summertime 
are 0.1865, 7.6565 and 0.8587, respectively, as well as those of H2S in wintertime of 57.3827, 16.9303 and 
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0.6126, PLS T of 0.8473, 2.5040 and 0.7034 (in summertime), and 0.3621, 1.3917 and 0.9377 (in wintertime), 
and PLS RH of 2.3460, 3.7687 and 0.7467 (in summertime), and 4.2471, 7.2806 and 0.5419 (in wintertime), 
which are much better than those using the methods of ANFIS and MLR. 

Therefore, from the results of prediction curve and the performances that compared above, the predictions 
for gas concentrations of NH3, CO2, and H2S, PLS T and PLS RH using the LSTM method are more optimal than 
those using other two methods of the ANFIS and MLR. 

 

Conclusions 

The conclusions were drawn in this study: 

(1) It was found that the LSTM model with the number of neurons of 400, time lag of 1, and learning rate of 
0.008, could achieve better performances of RMSE, MAPE and R2 both in summertime and in wintertime. 
The LSTM model for the concentrations of NH3 in wintertime, H2S in summertime, PLS T and PLS RH both 
in summertime and wintertime had better output performances of RMSE, 

(2) MAPE and R2 compared with those using the methods of ANFIS and MLR, at the same time, it also 
demonstrated that the deep learning method of LSTM is more suitable for the predictions of time series. 

(3) The average errors between predictions and observations during the two periods of summertime and 
wintertime for concentrations of NH3, CO2 and H2S, PLS T and PLS RH were 0.197 ppm, 92.7855 ppm, 
27.6414 ppm, 0.2579 oC, and 0.0361%, respectively. 
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