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Abstract 

Chicken coccidiosis is a disease caused by Eimeria spp. and costs the broiler industry more than 14 billion 
dollars per year globally. Different chicken Eimeria species vary significantly in pathogenicity and virulence, 
so the classification of different chicken Eimeria species is of great significance for the epidemiological survey 
and related prevention and control. A new hybrid model integrating Transformer structure and the residual 
module in convolutional neural network (CNN), named Residual-Transformer-Fine-Grained (ResTFG), was 
proposed and evaluated for fine-grained classification of microscopic images of seven chicken Eimeria 
species. The results showed that ResTFG achieved the best performance with high accuracy and 
computationally efficient compared with traditional models. Specifically, the parameters, inference speed 
and overall accuracy of ResTFG are 1.95M, 256 FPS and 96.9%, respectively, which are 10.9 times lighter, 1.5 
times faster and 2.7% higher in accuracy than the benchmark model. In addition, the results of ablation 
experiments showed that CNN or Transformer alone had model accuracies of only 89.8% and 87.0%. This 
study invented a reliable, computationally efficient, and promising deep learning model for the automatic 
fine-grain classification of chicken Eimeria species, which could potentially be embedded in microscopic 
devices at an affordable price for producers to improve the work efficiency of researchers and to be 
extended to other parasite ova, and applied to other agricultural tasks as a backbone. 
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Introduction 

Chicken coccidiosis is a widespread and economically significant disease caused by parasite of the genus 
Eimeria (Chapman et al., 2013; Mesa et al., 2021), costing the global broiler industry more than 14 billion dollars 
per year (Adams et al., 2022). There are seven Eimeria species. Different chicken Eimeria species vary 
significantly in pathogenicity and virulence, so it is of practical significance to distinguish Eimeria species for 
epidemiological survey and related prevention and control. 

The molecular biological methods are accurate and sensitive but require sophisticated protocols, and the 
morphological examination is a very challenging task for naked eyes due to the small morphological 
differences among chicken Eimeria species. Therefore, there is an urgent need to develop an automatic 
identification process for chicken Eimeria species. In some studies, The morphological characteristics of 
Eimeria oocysts were extracted and semi-automatic recognition was carried out by machine learning 
algirithms (Castañón et al., 2007; Kucera and Reznicky, 1991). Castañón et al. (2007) achieved the best overall 
accuracy of 85.75%. However, the semi-automatic methods requires manually designed features, which is 
cumbersome. The rapid development of convolutional neural network (CNN) has provided a powerful tool 
for the image recognition task (Esteva et al., 2017). Due to the superiority of CNN, it has been used for species 
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identification of various parasites with good results and has been embedded in automated devices (Abade 
et al., 2022; Butploy et al., 2021; Lee et al., 2021; Thevenoux et al., 2021; Yang et al., 2020). Monge and Beltrán 
(2019) proposed a CNN model to classify chicken Eimeria species and the accuracy was improved to 90.42%, 
which still has room for improvement. 

It is observed that the CNN-based models could achieve better results than traditional models. But these 
studies did not realize that the Eimeria species recognition is a fine-grained classification task, which focusing 
on the classifying objects of similar but different subtypes (Zhao et al., 2020). The Transformer structure has 
been successfully applied in major computer vision tasks (Dosovitskiy et al., 2021; Zheng et al., 2021), and 
TransFG achieved State-of-The-Art (SOTA) performance on five popular fine-grained classification 
benchmarks (He et al., 2021). The feature of local region connection makes CNN good at capturing local 
features, but lacks the ability to capture global features. Transformer can capture global features well, but is 
less capable of capturing local features. Therefore, theoretically integrating CNN and Transformer structure 
could improve the model performance, and the results have shown that the combination can indeed achieve 
good performance in their studies (Dai et al., 2021; Lu et al., 2022). 

In this study, a new hybrid model, named Residual-Transformer-Fine-Grained (ResTFG), was proposed for the 
classification of chicken Eimeria species based on the residual block (He et al., 2016) and TransFG (He et al., 
2021). 

 

Materials and methods 

Dataset 

Dataset description. The dataset used in this study was from a publicly available website 
(http://www.coccidia.icb.usp.br/). Figure 1 shows the characteristic morphology of the seven chicken Eimeria 
species. 

 

Figure 1: Micrographs of chicken Eimeria oocysts: (a) E. Maxima, (b) E. Brunetti, (c) E. Tenella, (d) E. Necatrix, (e) 
E. Praecox, (f) E. Acervulina, and (g) E. Mitis. 

 

Dataset augmentation and splitting. There is an originally large difference in the number of different oocyst 
categories with uneven distribution. All E. Maxima images were flipped horizontally, and 300 E. Brunetti 
images and 200 E. Necatrix images were randomly selected for horizontal flipping. After balancing the 
dataset, the total number of images increased from 4243 to 5103. The details of the dataset are shown in 
Table 1. 

http://www.coccidia.icb.usp.br/)


Table 1: The number of images of the chicken Eimeria oocyst dataset. 

Class label Species name Original 
After data

 
augmentation 

 
Partitioning of the dataset 
(7:3) 

 Training Test  
 

ACE E. Acervulina 742 742 520 222 
BRU E. Brunetti 442 742 520 222 
MAX E. Maxima 360 720 504 216 
MIT E. Mitis 825 825 578 247 
NEC E. Necatrix 502 702 492 210 
PRA E. Praecox 676 676 474 202 
TEN E. Tenella 696 696 488 208 

Total number  4243 5103 3576 1527 

Methods 

Equipment and Environment. To facilitate intensive computation in model training, a professional deep 
learning platform, SYS-4029GP-TRT was used, equipped with 2 × Intel© Xeon(R) Gold 6147M CPU @ 2.50GHz, 
a total of 260 GB memory, and 8 graphics cards including 4 × Nvidia TITAN RTX and 4 × Nvidia GeForce RTX 
2080 Ti, a total of 140 GB video memory. The testing and inference speed measurement of models were run 
on a desktop computer with GeForce RTX 3080 GPU and Inter(R) Core (TM) i9-10900KF CPU @3.70GHz. In 
terms of the software environment, Python-3.8, PyCharm-Professional-2021.2.3, and Pytorch-GPU-1.8.1 
framework were used. 

Proposed model. The framework of the proposed ResTFG model is shown in Figure. 2. The left and the right 
parts are the CNN and Transformer branches, respectively. 

 

Figure 2: The overview of the proposed Residual-Transformer-Fine-Grained (ResTFG) model. 



The CNN branch consists of an input layer, a maximum pooling layer, an average pooling layer, a flatten layer, 
five CBR modules (acronym for Convolution Batch-Normalization ReLU (rectified linear unit)), and one or 
two residual blocks. The k, s and p in Figure 2 represent the kernel size, stride, and padding of the convolution 
layer, respectively. As shown in Figure 3(a), the CBR module consists of three layers, a convolution layer with 
a kernel size of 3×3, a stride of 1×1 and a padding of 1, followed by a batch normalization (BN) layer and a 
ReLU layer. The structure of the residual block is shown in Figure 3(b), composed of an input layer, four CBR 
modules, a downsampling operation and an output layer. The downsampling operation is implemented by a 
convolution layer with a kernel size of 1×1, a stride of 2×2 and no padding, and is connected to a BN layer 
afterward. When there is only one residual block, it is then connected to the average pooling layer and the 
flattening layer. The second residual block is directly connected to the flattened layer when there are two 
residual blocks. This design aims to match the feature dimensions after the flattened layer with the input 
dimensions of the Transformer branch. 

 

Figure 3: The structure of the Convolution Batch-Normalization ReLU module (CBR) (a), and the residual block (b). 
 

Experimental setting. All models used were trained from scratch. The initial learning rate is 0.001, and the 
decay rate is 0.5 for every 20 epochs. In addition, the number of epochs is 100, the batch size is 64, and the 
optimizer is Stochastic Gradient Descent (SGD) with a 0.9 momentum and a 1e-4 weight decay. 

 

Results and discussion 

Performance of existing models 

Seven existing SOTA models were compared. The results are shown in Table 2. The accuracy of 
MobilenetNet_V3_Small, MobilenetNet_V3_Large (Howard et al., 2019) and Shufflenet_V2_x1_0 (Ma et al., 
2018) was relatively low. It was surprising VGG11(Simonyan and Zisserman, 2014), with the maximum number 
of parameters, achieved the fastest inference speed of 409 FPS, but its memory consumption is high. 



DenseNet121 (Huang et al., 2016) had a good accuracy, but very slow inference speed. TransFG_B16 (He et 
al., 2021) also had good accuracy but high memory consumption. ResNet34 (He et al., 2016) was identified as 
a balanced model with 21.29M parameters, 166FPS and 94.2% accuracy, which was selected as the benchmark 
model. 

 

Table 2: The performance of SOTA models.  

Model Name Parameters (M) Speed (FPS) Accuracy (%) 

VGG11 128.80 409 86.9 

MobilenetNet_V3_Small 1.53 157 86.3 
MobilenetNet_V3_Large 4.21 107 90.7 

ResNet34 21.29 166 94.2 
DenseNet121 6.96 56 92.7 

Shufflenet_V2_x1_0 1.26 146 80.4 
TransFG_B16 85.80 104 93.5 

Optimization of transformer branch 

The initial value of three hyperparameters in the Transformer branch, i.e., hidden size, MLP dimension and 
the number of multi-attention heads was 768, 3072 and 12 respectively. The initial model was named ResTFG 
(C13, H12, L8) (a), where [C] represents the number of convolution layers, [H] represents the number of multi 
attention head, [L] represents the number of the encoder block layer, and the letter suffixes (a-d) correspond 
to the different hidden size and MLP dimension. As shown in Table 3, ResTFG (C13, H12, L2) achieved a 
balanced performance. 

 

Table 3: The performance comparison of the ResTFGs for the Transformer branch with different hyperparameters 
 and the number of the encoder block layer.  

 

Model Name 
Hidden 

size 
MLP 

dimension 
Number 

heads 
Number 
Layers 

Parameters 
(M) 

Speed 
(FPS) 

Accuracy 
(%) 

TransFG_B16 768 3072 12 12 85.80 104 93.5 

ResTFG (C13, H12, L8) (a) 768 3072 12 8 82.14 105 97.2 

ResTFG (C13, H12, L8) (b) 384 1536 12 8 21.50 112 97.0 

ResTFG (C13, H12, L8) (c) 288 1024 12 8 11.90 113 95.7 

ResTFG (C13, H12, L8) (d) 192 768 12 8 6.12 116 95.7 

ResTFG (C13, H8, L8) 384 1536 8 8 21.50 114 96.7 

ResTFG (C13, H4, L8) 384 1536 4 8 21.50 114 96.6 

ResTFG (C13, H2, L8) 384 1536 2 8 21.50 114 96.0 

ResTFG (C13, H12, L6) 384 1536 12 6 17.96 134 96.5 

ResTFG (C13, H12, L4) 384 1536 12 4 14.41 165 96.9 

ResTFG (C13, H12, L3) 384 1536 12 3 12.63 183 97.0 
ResTFG (C13, H12, L2) 384 1536 12 2 10.86 216 97.1 

Optimization of CNN branch 

As shown in Table 4, ResTFG (C9, H12, L2) (c) obtained the advantages of both high performance and 
lightweight, with the number of parameters of 1.95M, an inference speed of 256FPS, and an accuracy of 
96.9%, which is 10.9 times lighter, 1.5 times faster, and 2.7% higher in accuracy than ResNet34. 



Table 4: The performance comparison of the ResTFG for the CNN branch with different kernel parameters and the 
number of the convolution layer.  

Model Name Hidden size MLP dimension 
Parameters 

(M) 
Speed 
(FPS) 

Accuracy 
(%) 

ResTFG (C13, H12, L2) 384 1536 10.86 216 97.1 

ResTFG (C9, H12, L2) (a) 384 1536 10.09 254 96.5 
ResTFG (C9, H12, L2) (b) 180 720 2.50 256 96.7 

ResTFG (C9, H12, L2) (c) 156 624 1.95 256 96.9 

ResTFG (C5, H12, L2) 156 624 1.80 299 96.2 

Ablation studies on ResTFG 

The test results are shown in Table 5. There is no doubt that the number of parameters would be reduced 
and the inference speed would increase with only the CNN or Transformer branch. But the accuracy of these 
two models decreased significantly by 7.1% and 9.9%, respectively. The results showed sufficient evidence 
that the hybrid model can fully utilize the advantages of CNN and Transformer. 

 

Table 5: The performance of the ResTFG with only CNN or Transformer branch.  

Model Name Parameters (M) Speed (FPS) Accuracy (%) 

CNN Only 0.92 549 89.8 

Transformer Only 1.03 403 87.0 

ResTFG (C9, H12, L2) (c) 1.95 256 96.9 

Balance of accuracy and inference speed 

Figure 4 shows the bubble plots of seven SOTA models and our model, with larger bubbles representing 
more parameters. Our model is a balanced model with the advantages of both high performance and 
lightweight. 

 

Figure 4: The bubble plots of seven SOTA models and our model. 



Conclusions 

A new hybrid deep-learning model, named ResTFG, which integrates the advantages of the CNN and 
Transformer structure, was proposed in this study. The CNN structure containing residual blocks was used 
as the backbone, which has a powerful feature extraction ability, and compensated for the defect of CNN 
lacking a global receptive field through the deployment of the multi-head attention mechanism in 
Transformer. The ablation experiments proved the synergistic effect of integrating the CNN and Transformer 
structure. Overall, the proposed ResTFG model performs well, achieving an accuracy of 96.9%, an inference 
speed of 256 FPS, and a memory consumption of 1.95M, which has the advantages of both high accuracy and 
computationally efficient. This model can improve the work efficiency of researchers. More importantly, for 
people who do not have the ability to identify Eimeria species with the naked eye, they can obtain species 
distribution information to infer the severity of the disease with the help of this automatic identification 
system, which can provide guidance for subsequent medication and the basis for effective control measures. 
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