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Abstract 

Individual animal identification is extremely important in dairy production. Accurate animal identification is 
not only important for farm management, but also for issues of food security and consumer trust. Computer 
vision has been proposed as a reliable, non-invasive system to recognize animals, but there is limited research 
on their capacity to detect the same individual at different stages of life. The potential for computer vision 
systems (CVS) to recognize an adult cow from her images as calf will allow for comprehensive animal tracking 
and reliable traceability systems. The objective of this study was to develop a CVS that utilizes images 
collected from Holstein calves in the first few weeks of life to identify the same individuals after a year of 
growth. To train the model, top-down view infrared images of 10 calves (1 to 4 wk of age) were collected on 
four separate days and segmented for the calf body, resulting in 200 images per calf. The images were used 
to train a deep neural network (Xception) for individual identification. The trained model was tested on 20 
infrared images of each animal collected from top-down view after one year (60 wk of age). All analyses were 
implemented in Python using the open-source framework Tensorflow and Keras. The precision and recall of 
prediction for identifying individual calves were 0.78 and 0.76, respectively. These results demonstrate the 
potential of CVS for animal identification, even when images used for training are collected much earlier on 
the animals’ life and during their growing phase. 
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Introduction 

Animal tracking and traceability is a matter of critical importance on dairy farms. Not only do many countries 
mandate individual animal identification for cattle (USDA APHIS, 2020; European Parliament and the Council 
of the European Union, 2000), but individual traceability throughout an animal’s life can also assist in 
mitigating disease outbreak (USDA APHIS, 2022), and improve food security and consumer trust (Smith et 
al., 2005). Cattle traceability can be improved through the use of physical forms of identification such as ear- 
tag identification (USDA APHIS, 2020) and wearable sensors such as electronic ear tags using Radio 
Frequency Identification (RFID; Kang and Lee, 2013), among others. However, these identifiers can be labor- 
intensive on large scale operations, prone to human error, and easily lost or damaged, creating weakness in 
the reliability of a full-scale individual traceability system. 

Computer vision has been proposed as a powerful tool to recognize and manage cattle on commercial dairy 
operations. Different deep learning techniques utilized in the field of computer vision allows for increased 
performance in tasks such as object detection, image classification, and semantic segmentation (Voulodimos 
et al., 2018). This creates opportunities for CVS to become an automated, non-invasive, and reliable 
alternative for identification of individual animals. 

In recent years, individual animal identification through CVS has been an area of intensive research and 
innovation. Andrew et al. (2021), Bello et al. (2020), and Yukun et al. (2019) were able to accurately identify 
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individual Holstein cows based on coat color patterns. However, these studies focused on mature cows. 
Recently, Ferreira et al. (2022) used depth images and 3D representation for individual animal identification 
in pre-weaned calves, demonstrating the potential for convolutional neural networks to identify animals over 
short periods of growth (6 weeks). In order to establish a comprehensive and inclusive systematic 
traceability system on livestock farms, it is important to investigate the ability of computer vision techniques 
to identify individual animals across different physiological stages as the changes in size and shape may affect 
their predictive performance. 

 

Materials and methods 

Data collection 

For the training set, videos were recorded from 10 pre-weaned Holstein dairy calves with ages varying from 
one to four weeks, and body weight (BW) of 41.9 ± 4.4 kg (average ± SD), housed at the Emmons Blaine Dairy 
Cattle Research Center (Arlington, WI). One video was recorded for each calf once a week for four 
consecutive weeks using an Intel RealSense Depth Camera D435 (Intel; Santa Clara, CA) which has an RGB 
camera (resolution of 1920 x 1080 pixels), a depth sensor (resolution of 1280 x 720), and an infrared projector. 
The 40 videos were recorded from a top-down view while weighing each animal individually and contained 
only a single calf in each video. All videos were recorded using Intel RealSense Viewer v2.50.0 (Intel; Santa 
Clara, CA) installed on a laptop locally operated by a person who manually recorded each calf as it was 
positioned on the scale. A total of 50 images (infrared and depth) were extracted from each video at random, 
resulting in 200 images (with both infrared and depth frames) for each animal. 

For the test set, 200 images (infrared and depth) were collected from the same 10 animals at 60 weeks of 
age and BW of 457.6 ± 18.7 kg (average ± SD) housed at the Marshfield Agricultural Research Station 
(Marshfield, WI). Heifers at this facility were housed in bedded-pack pens containing 8 heifers and a single 
waterer. All pens are equipped with an Intel RealSense Depth Camera D435 positioned ~4 meters above the 
waterer in each pen. Images were automatically collected based on motion detection during drinking time 
from a Jetson Nano (NVIDIA; Santa Clara, CA) connected to each camera. Images from a single day were 
manually cropped to include a single heifer to total 20 images for each animal. 

Image preprocessing 

Background removal was performed for each acquired frame in each dataset. In order to remove background 
pixels from the captured depth images, a network based on the Mask R-CNN (He et al., 2018) was 
implemented to automatically detect and retain all pixels containing an animal. For the purposes of this study, 
the calves’ and heifers’ bodies were cropped to include the region between their tails and their necks. The 
Mask R-CNN network for background removal was trained and leveraged from a previous study (Ferreira et 
al., 2022). The resulting depth mask, shown in Figure 1(b), has pixels containing the calf or heifer body 
appearing in white, and the background appearing in black. 

For each frame, the pixels detected as containing a calf were converted to a set of points in a 3-dimensional 
coordinate system (a point cloud). For each pixel (𝑖, 𝑗) containing a depth value𝑑, a point (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) was 
created with values (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) = (𝑗, 𝑖, 𝑑). This resulted in a point cloud with the number of points equal to 
the number of pixels that were part of a calf in the original frame. Outlier points were then removed based 
on their 𝑍-axis coordinates, or depth value, in order to prevent the inclusion of background pixels due to 
segmentation errors. A value was considered an outlier if it was more than three scaled median absolute 
deviations (MAD) from the median. For a random vector X with N scalar observations, the MAD is defined as 
follows: 



MAD = median (|Xi – median(X)|) , for i = 1, 2, …, N 

The scaled MAD is defined as k ∗ MAD, where k ≈ 1.4826 is a constant scale factor that depends on the 
distribution (Rousseeuw and Croux, 1993). In this case, we operated under the assumption that the Z-axis 
values were normally distributed. 

The binary mask was then applied to the corresponding infrared image, setting every pixel not contained in 
the mask to zero, therefore removing the background around the animal body (Figure 1c). 

 

Figure 1: Example of infrared images and masks for calf (first row) and heifer (second row) body segmentation. 

Table 1: Training set and test set size and animal age for experiment 1 and 2.  

 
Experiment 

Training set 
animal age 

Training set 
Test set 

animal age 

 
Test set size 

 (weeks) size (images) (weeks)  

1 1-4 1,000 60 200 

2 1-4 2,000 60 200 

Training and test sets 

Training and test sets were split by age of the animal. All images used in the training and test sets were 
cropped and segmented infrared images. Two different experiments were designed to evaluate the impact 
that training set size and age of calf on the prediction quality of the tested algorithm, shown in Table 1. In the 
first experiment (Experiment 1), we used 50 images per animal collected for four consecutive weeks after birth 
for the training set, resulting in a total of 1,000 images. In the second experiment (Experiment 2), we used 
50 images per animal collected for four consecutive weeks after birth for the training set, resulting in a total 
of 2,000 images. Also, brightness and contrast were adjusted in training set images. The testing set for both 
experiments included 20 images of each animal (resulting in a total of 200 images) at 60 weeks of age housed 
in a different facility. 



Algorithm 

The deep neural network (DNN) Xception (Chollet, 2017), illustrated in Figure 2, was implemented in Python 
using the open-source frameworks TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015). The last 
Fully-Connected (FC) layer of the original architecture was removed, and all the other layers were initialized 
with weights trained using the open image dataset ImageNet (Deng et al., 2009). This strategy, defined by 
Weiss et al. (2016) as Transfer Learning, accelerates the training process by initializing the network weights 
with values optimized for a large generic image dataset instead of random values. 

The Xception-based DNN was extended with a global average pooling layer as described by Lin et al. (2014), 
followed by a FC layer of size 1024 and the ReLU activation function, then a final FC layer of size n and the 
softmax activation function. 

The training process was split into two consecutive stages: feature extraction and fine-tuning. In the feature 
extraction stage, the DNN was trained for 200 epochs keeping the weights of all but the last two FC layers 
frozen. This allowed features previously learned through Transfer Learning to be used and retained. In the 
fine-tuning stage, weights from earlier layers were unfrozen, and the network was trained for 400 epochs 
with a smaller learning rate, allowing it to further learn features that are more specific to our context. 

 

 
Figure 2: Representation of the Xception architecture. Adapted from “Xception: Deep learning with depthwise 
separable convolutions.” by Chollet, 2017. 



Evaluation metrics 

To evaluate the prediction quality of the algorithms, the accuracy, precision, recall, and F1 score were 
calculated as follows: 

Accuracy = 
 TP + TN 

 
TP + FP + TN + FN 

Precision = 
  TP 

 
TP + FP 

Recall = 
  TP 

 
TP + FN 

F = 
 2TP  

(1) 
 

(2) 
 

(3) 
 

(4) 

1 
2TP + FP + FN 

where: TP = True positives, TN = True negatives, FP = False positives, FN = False negatives. 
 

Results and discussion 

In Experiment 1, the accuracy, precision, recall, and F1 score of prediction for identifying individual calves 
were 0.36, 0.37, 0.33, and 0.35, respectively. In Experiment 2, the same metrics were 0.76, 0.78, 0.76, and 
0.77, respectively. 

 

Table 2: Accuracy, precision, recall and F1-score for experiments 1 and 2  
 

Experiment Accu racy Precision Recall F1 score 

1 0.3 6 0.37 0.33 0.35 

2 0.7 6 0.78 0.76 0.77 

The large increase in prediction performance from Experiment 1 to Experiment 2 demonstrates that larger 
training sets are necessary for individual animal identification during periods of growth or across different 
physiological stages in dairy cattle. Similarly, Ferreira et al. (2022) illustrated the importance of training set 
size. For pre-weaned calves, performance of multiple convolutional neural network architectures improved 
as the number of training images per animal increased, up until 100 images per animal (Ferreira et al., 2022). 
In contrast, Nye et al. (2020) found that a sample size of only 50 images were required to train their semi- 
supervised machine learning approach for dairy cattle identification. Importantly, Nye et al. (2020) used adult 
cattle and side-view images, while our experiments were designed to identify animals after physiological 
changes from top-down view. 

The results from Experiment 2 show that using infrared images from calves in their first month of life can be 
used to identify them after a year and in a different environment. This is an important step in individual animal 
traceability on dairy operations with multiple locations. Although individual animal identification based on 
coat color pattern has been proposed by Andrew et al. (2021), Bello et al. (2020), and Yukun et al. (2019), 
these studies focused on mature cattle and did not include identification across different physiological 
stages. In order to establish traceability of cattle throughout their lives, development of systems to reliably 
identify the same animal regardless of physiological change is crucial. To the best of our knowledge, this is 
the first work to evaluate the ability of convolutional neural networks to identify animals over long periods 
of growth and across different physiological stages. 

However, there are limitations to deep learning methods that rely on coat color pattern, as their 
performances are greatly decreased when applied to recognize individuals in dairy and beef cattle breeds 
with homogenous appearances such as Jersey, Brown Swiss, and Angus. These methods are also limited due 



to lighting, significant occlusion, and scenarios where animals can be covered in mud or dirt. An approach to 
address these limitations was proposed by Ferreira et al. (2022), where depth images were used to identify 
individual pre-weaned Holstein calves within 6 consecutive weeks (F1 scores > 0.80). Although this 
identification strategy performed well with images collected from calves at a young age, it is unknown how 
well it would perform across long periods of growth. The next step in this study is to combine and compare 
2D and 3D methods of animal identification during growth and across different physiological stages to create 
a robust system for individual animal traceability. 

 

Conclusions 

Computer vision systems are a promising solution to individual animal traceability through periods of growth 
and physiological changes in dairy cows. An Xception-based deep neural network performs with high 
precision and recall when identifying individuals with unique coat patterns after one year of growth. 
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