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Abstract 

Systems to continuously monitor broiler chicken welfare during grow-out are emerging which rely on sensing 
and machine learning. Audio analytics, one such system, is a promising complement to video analytics and 
environmental sensing. Machine learned models developed in academic settings often do not perform well 
in commercial settings, so there is interest in practical examples of audio analytic use cases developed in 
commercial settings. This paper describes AudioT INCs audio analytic system developed in commercial grow- 
out house as part of FFAR’s Smart Broiler initiative. A description of the data acquisition, model development, 
and model results is shared around a practical example of respiratory disease detection and tracking. 
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Introduction 

New systems are emerging to continuously monitor animal welfare for poultry grow-out. This paper reports 
on experiences and findings during development of audio analytic methods for monitoring poultry grow- 
out. Many of the perspectives shared in this paper were refined by our experience in phase one of the 
Foundation for Food and Agriculture Research (FFAR) Smart Broiler program, which was instituted to define 
the technologies required to “objectively and comprehensively assess broiler welfare worldwide”. With the 
support of McDonalds, Tyson Foods, and others, a number of teams were funded to apply audio- and video- 
analytic approaches to report key welfare indicators based on evidence of bird behavior. The first phase of 
the program sought to demonstrate detected outcomes with the availability of recorded data. The second 
phase, which is currently active, seeks to implement as much as possible with on-farm edge computing. The 
collective effort may be transformative to the reporting and management of animal welfare globally. 

The poultry industry is highly competitive and is facing increasing pressures related to the responsible 
sourcing of meat. NGOs are actively and successfully campaigning against the industry’s largest suppliers to 
get them to commit to various animal well-being programs, usually with an implementation deadline of 2024. 
However, many of the requirements of these programs lack thorough scientific validation and could 
drastically increase the costs of poultry production. This creates a compelling need in the industry for cost- 
efficient technologies that can monitor the actual state of the birds to provide the traceability and evidence 
of well-being needed to satisfy customer demands. 

In addition to helping address PR and traceability issues, poultry monitoring also has potential to help 
farmers become more responsive to their birds’ needs and improve their production efficiency. The best 
farmers tend to be skilled at picking up on various cues from a flock to determine what adjustments need to 
be made. Notifications from a monitoring system would help facilitate these farmers’ efforts and enable 
others to see some of the same benefits. 
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Audio analytics have shown the ability to highlight important conditions specific to the age of the bird. This 
includes distress calling during the first week, activity levels and pleasure/pain indicators during mid-life, and 
activity levels and disease detection toward late life. This holistic approach is enabled through the 
development of specific classifiers for specific activities—which may include heat stress, respiratory disease, 
human intrusions, feed outages, and bird activity levels, as well as equipment and environmental events. 
While it is not anticipated that audio analytics can replace all other forms of monitoring, audio provides a 
cost-effective way to monitor the condition of poultry in ways not possible, or not easily replicated, by video, 
chemical, and other sensor systems. 

This paper describes a practical implementation of audio analysis in support of a commercial broiler grow- 
out house. The example chosen is the development of models to support the detection and tracking of 
respiratory disease – which highlights the simultaneous monitoring of multiple vocalizations and the 
significance of multiple zones in tracking events through the house. 

 

Audio acquisition 
 

Figure 1: Audio acquisition methods 
 

Figure 1 shows the fundamental steps used to acquire audio suitable for machine learning from a commercial 
environment. Many of these steps are not unique to broiler grow-out, but some are. Microphones should be 
closely matched in frequency response and sensitivity to support the generality of models to function as 
expected. As a broiler house may nominally be over 100 meters long, a single microphone cannot be used to 
assess the state of animals in the house. AudioT typically deploys 16 microphones to establish 16 “zones” in 
which animal behavior can be monitored. Placement should be logical to establish low correlation between 
zones with the exception of loud sounds which permeate more of the house. 

It is also useful to characterize the existing environmental systems in isolation by taking measurements 
before the animals are placed. During growout, the recordings are coordinated by a purpose-built logger 
that synchronizes the recordings to a real time clock, and stores them in a defined file structure for easy 
retrieval. Data is periodically uploaded to the cloud for subsequent storage and processing. AudioT uses AWS 
as a cloud service provider for the benefits not only of storage, but the use of AWS Sagemaker ML 
development tools. 
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Figure 2: Example of 16 microphones creating 16 Zones within grow-out house for localized monitoring and more 
spatially precise metrics. 

 

Model development 
 

Figure 3: Model Development (left) and Application of the model for inference and reporting (right) The goal of 
the process is to move from identification of sounds corresponding to disease progression to a multi-classification 
model which can automatically predict individual instances from raw audio. 

 

Figure 3 shows AudioT’s Model Development process particularly as it applies to the complex task of 
detecting and tracking progression of respiratory disease. Other projects will have analogous steps, but 
specific dictionary, feature extraction, and pre-processing steps may differ, 

Establishing canonical samples 

Consistent labeling is critical to model performance, and difficult to achieve. There are not many poultry 
vocalization experts, so it is important to create a dictionary of vocalizations which can be used by a team 
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for labeling, and then to cross-check the accuracy of modeled output against the dictionary templates. The 
first task was to characterize changes in vocalizations as the disease progressed through individual animals, 
and to establish 5 canonical audio signatures corresponding to the progression. The five signatures ranged 
from the initial “snick” [class 1] to the final “gasp” [class 5]. All non-targets were categorized as noise [class 
0]. 

From the first two days of active infection, 100 randomly selected raw audio files (each one minute in 
duration) were selected from a single microphone. These files were graded and down selected for the lowest 
background noise. A small team used conventional audio analytic techniques (visual analysis of spectrograms 
and listening) to individually mark vocalization patterns of interest in the audio files, develop consensus on 
label names and structure, and compile a small dictionary of representative examples of each. The dictionary 
was validated by domain experts: poultry veterinarians and farm managers. The resulting dictionary was 
detailed enough to allow data labelers to differentiate “coughs” (technically chickens do not cough, but this 
is a common descriptor) as type 1, 2, 3, 4, 5 corresponding to the disease progression. 

Ground truth 

A larger set of files was down-selected from three days where the infection was active, and noise reduction 
algorithms which were effective at removing the relative stationary noise of environmental control and feed 
systems was applied, which left the vocalizations intact. 117 files were split between the team members for 
manual labeling using audio analytic techniques, and a final audit by team members to ensure consistent 
practice. The result was the initial ground truth data for model development. While ideally this ground truth 
would remain unaltered, in practice subsequent model development steps will highlight data which has been 
mislabeled – a form of secondary audit – and corrections will be made to the ground truth data during the 
model development phase. The files are divided into training and validation sets. 

Feature extraction 

Training files were filtered to the range of 100- to 4000-Hz, and then mapped by a “feature extraction” step 
to 10 Log-MEL features. As a check, these features were plotted and the mean of each feature was identified, 
within a range or -3 to -4.3. 

More detailed features would be needed to differentiate all five classes, thus Deltas were obtained by taking 
the first derivative of the Log-MEL, and Delta-Deltas their second derivative. Understanding the speed and 
direction of energy changes added the missing information. Scaling was applied to log-MEL features, then 
Deltas, then Delta-Deltas to bring them more in conformance which aided some models. 

Preprocessing 

Standarization. To generalize the model to apply to other microphones, a standardization step was added 
after feature extraction. Normalization typically rescales the values into range [0,1]. Standardization typically 
rescales data to have a mean of 0 and a standard deviation of 1. After standardization, each feature column 
will have a mean of 0 and the standard deviation of 1 which eliminates realistic scale differences. 
Standardization accomplished with the following simple formula: mu (μ) is the mean and sigma (σ) is the 
standard deviation of the values. 

 
 

where 𝜇 = Mean and 𝜎 = Standard Deviation 

𝑧 = 
$RS 

T 

Stacking multiple audio frames. Multiple “narrow” frames need to be concatenated to cover single instances 
of some vocalizations. “Stacking” enhances model performance. The trade-off is more complexity. 3 
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contiguous frames are stacked into one, so instead of 30 features in single 50 millisecond frame, 90 features 
are in each stacked 150 millisecond frame. 

Remove abnormal outliers from background using random cut forest (RCF) algorithm. Many of the target 
vocalizations were being missed by an early model, so a random cut forest (RCF) model was added to the 
pre-processing chain to increase the number of true positive vocalizations captured. Non-coughs were 
categorized as background noise. RCF was a non-supervised algorithm chosen for convenience because it 
was a built-in feature of AWS Sagemaker which provided an anomaly score for each data point. The concept 
behind the RCF is to use random cut (on dimensions/ features) to separate groups of data points (or trees) 
from a sampled set of data points (called bounding box) [5]. Each separated group becomes the next 
bounding box and continues to be separated until all trees are isolated. The closer the points (distance 
measured as the number of cuts) to the original data set, the higher its anomaly score. A final score is 
calculated as the average across scores. Outliers were removed by thresholding using the standard deviation 
from the mean for the anomaly score to separate the background noise (using a value of 1). 

Balancing. The nature of the data creates a very unbalanced data set, with the null case (“0”) being the 
majority class by a couple more orders of magnitude. Under sampling was performed on class 0. 

Model training 

Several algorithms including K-nearest neighbor (KNN), Neural Network (NN), and XGboost were 
investigated. After several steps of data pre-processing and tuning, finally XGboost model was the best 
performer. The weighted average F1-score achieved more than 0.4 for 5 classes of coughs. 

 

Table 1: Summary of weighted average F-1 score for XGboost model  

no tuning 
no Standardization 

with tuning 
no Standardization 

with tuning 
with Standardization 

Models Original 
audio 

Noise 
reduced 

Original 
audio 

Noise 
reduced 

Original 
audio 

Noise 
reduced 

Xgboost 0.403 0.418 0.445 0.440 0.399 0.427 
 

 

Figure 4: Individual f1-score for XGboost model with hyperparameter tuning (on noise-reduced audio with 
standardization) [left]. Confusion matrix [right]. 

 

Adding a standardization step slightly decreased the F-1 score from 0.440 to 0.427, even it is not the best 
performer; however, the standardization is necessary for applying the model into new data prediction from 
other microphones. Therefore, this is the best model (F-1 = 0.427) we selected to use practically for all the 
prediction. 
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Applying the model 

Referring to Figure 3, the basic operation steps of inference and reporting are described below. 

Raw data and pre-processing 

The pool of raw audio data to be processed includes all of the microphone in the house. In this instance eight 
microphone were used. While, all of the modeling work was conducted using data from a single microphone, 
the pre-processing noise reduction and standardization steps prescribed earlier have the second benefit of 
allowing the resultant model to adequately predict results on the remaining microphones in the house. 
Feature stacking is also applied to enable the differentiation of all 5 vocalization categories. 

Prediction 

Applying the model to the pre-processed data is straight-forward as AWS platform has the requisite data 
storage and data processing capabilities. Scripts and Lamdba functions invoke computational resources, 
funnel required data to processing from S3 or EFS data storage, apply the model, store results in S3, and tear 
down/close the processing resources. The results are predicted labels for all five classes and simple statistics 
that count the number instances of each one-minute file. 

Inference 

Intermediate Statistics: Daily total cough counts detected from different microphones and hourly counts for 
5 stages of coughs in each microphone were plotted. Log of cough counts served as a LT outbreak degree 
measurement and generated heatmaps with both hour and date axis for different microphones. Summarized 
prediction results were saved as csv files and loaded into Sagemaker Jupyter notebook as pandas 
dataframes. 

 

Results and discussion 

While there are several useful outputs from this effort, two are particularly illustrative. 

Change Detection: A practical objective was to provide the farm manager with tools to detect the onset of 
disease earlier. Level 1 coughs can be confused with normal vocalizations, and the middle stages will need to 
be caught as early as possible, the model can be customized to a desired threshold for each type of cough 
and alert the manager when they have been reached. 

 

Figure 5: Total “cough” counts from different microphones by day. 
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Spatial Analysis: The value of multiple microphones in the grow-out house is that conditions can be monitored 
to determine their origin and study changes at various locations in the house. By way of example, if all the 
coughs at each mic were tallied on hourly basis (Figure 5), the impression is that the LT outbreak is getting 
worse. The cough counts trend from all microphones were increasing [note: 2021-02-03 declines because de- 
population happened on that day]. The purple line (mic 13 at rear of house) is consistently higher than the 
blue line (mic 0 at the front of the house). 

While there is no obvious breakthrough point observed from Figure 5, the more detailed daily plots provide 
the detail (Figures 6a and 6b). The rear of the house has much more activity throughout the entire day, and 
the rate of infection is advanced. New infections (the blue line) are still advancing, so the disease cycle 
remains very active. 

 

Figure 6a: Rear of house (mic 12) 
 

By comparison, the front of the house is relatively quiet until the evening. Infection is still not at the level of 
the rear of the house (Y-axis scales are different), but clearly the disease has taken hold. 

 

Figure 6b: Front of house (Mic 00) Figure 6a: Front of house (Mic00) 
 

The spatiotemporal characteristics, extracted by generating the daily information and tracking the severity 
and spread, have implications for bio-security and operational planning. Knowing where the disease entered 
the house helps reduce repeat events. Early detection may result in greater medical intervention options or 
planning options. 
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Conclusions 

Audio Analytics will prove a cost effective and useful tool for continuously monitoring broiler welfare 
during grow-out. This paper reviewed the practical elements of a system from audio acquisition, and 
machine learned model development. The example of tracking respiratory disease highlighted some 
of the considerations and challenges of model development. 

 

Acknowledgments 

This project was funded by the Foundation for Food and Agricultural Research (FFAR), and the Georgia 
Research Alliance (GRA). This material is based upon work supported by the National Science 
Foundation under Grant No. 1919235. 

 

References 

Virtanen, T., Plumbley, M., AND Ellis, D. (2017) Computational Analysis of Sound Scenes and Events. 
Springer. Dinev, I. Diseases of Poultry. https://www.thepoultrysite.com/publications/diseases-of-poultry/ 

AWS Sagemaker Documentation - How random cut forest works: 
https://docs.aws.amazon.com/sagemaker/latest/dg/rcf_how-it-works.html 

XGBoost Documentation - https://xgboost.readthedocs.io/en/latest/parameter.html 

 

http://www.thepoultrysite.com/publications/diseases-of-poultry/

