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Abstract 

Individual egg identification technology has potential applications in breeding, egg production, and anti- 
counterfeiting of high-end brand eggs. This study developed a novel method for its individual identification 
based on eggshell images. A convolutional neural network-based model, named Eggshell Biometric 
Identification (EBI) model, was proposed and evaluated. The main workflow included eggshell biometric 
feature extraction, egg information registration, and egg identification. The image dataset of individual 
eggshell was first collected from the blunt end region of 770 chicken eggs using an image acquisition 
platform. The ResNeXt network was then trained as a texture feature extraction module to obtain sufficient 
eggshell texture features. The EBI model was applied to a test set of 1540 images. The results showed that 
when an appropriate Euclidean distance threshold for classification was set (17.18), the correct recognition 
rate and the equal error rate reached 99.96% and 0.02%. This new method provides an efficient and accurate 
solution for individual egg identification for product tracing and anti-counterfeiting. 
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Introduction 

Individual egg identification technology has potential application scenarios. For example, egg identification 
technology plays an important role in safeguarding the interests of high-end brand egg enterprises and 
consumers. To solve the problem of egg identification, external physical label methods with specific anti- 
counterfeiting identity labels attached to eggs are sometimes used, such as brand logos, digital numbers, 
RFID electronic labels, barcodes, and quick response codes (Arppe and Sorensen, 2017). These methods are 
likely to be counterfeited and the information in the labels is vulnerable (Lehtonen et al., 2007). Therefore, 
new authentication methods for egg identification should be based on unclonable identity tokens. 
Researchers tried to use the chemical composition (Barbosa et al., 2014) naturally contained in eggs as egg 
identity biomarkers (Tres et al., 2011; Bandoniene et al., 2018) to verify the difference in composition between 
specialty eggs (Cherian et al., 2002; Dong et al., 2021) and ordinary eggs. However, the above egg 
identification technologies require a cumbersome and time-consuming series of steps, and are destructive 
but of low accuracy, which cannot meet the requirements of egg individual identification in commercial 
settings. 

To overcome the problems associated with physical labels and chemical markers for egg identification, 
computer vision technology based on eggshell texture features can be adapted to collect and process egg 
image information for identification. Computer vision and image processing techniques have been 
increasingly used in the egg industry for a range of detection tasks (Nyalala et al., 2021). Existing researches 
mainly focused on eggshell surface defect detection (Turkoglu, 2021), including cracks (Bao et al., 2019), 
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stains (Yang et al., 2018), pimpled (Liu et al., 2017) and spotted (Zhang et al., 2021) eggs, which can be applied 
for egg grading and classification. However, the eggshell texture features are complex and it requires more 
robust image acquisition and processing algorithms to achieve higher recognition accuracy for individual 
identification. In recent years, Convolutional Neural Networks (CNNs) are particularly effective in image 
recognition tasks (Russakovsky et al., 2015; Alom et al., 2019). However, there is no research yet for egg 
individual identification technology based on eggshell texture as biometric features. 

In this study, we proposed and designed a residual network ResNeXt-based deep learning method for feature 
extraction and egg identification. The main workflow included biometric feature extraction, feature 
information registration, and egg identity authentication steps. The developed method, named Eggshell 
Biometric Identification (EBI) model, precisely identified individual eggs in the experimental settings. The 
method provided a reliable solution for egg identification applications, such as traceability in husbandry, 
traceability in commercial egg distribution, and anti-counterfeiting for high-end brand eggs. 

 

Materials and methods 

Image acquisition 

A total of 770 pink and brown commercial chicken eggs were procured from various local supermarkets in 
Hangzhou, China. The proportion of eggshell color was similar to that of the average market share in China 
with pink and brown eggs dominated (Yang, 2021). All eggs were manually inspected to confirm eggshell 
surfaces were clean, intact, and free of defects. As shown in Figure 1, each egg was randomly rotated and re- 
angled before an image was taken, and a total of 10 images were taken for each. A total of 7700 images of 
the blunt-end of the eggshell were taken with a pixel size of 4096×3000. 

 

Figure 1: Proposed eggshell images capture system 
 

Image preprocessing 

The egg images were preprocessed to remove background to obtain the region of interest (ROI) (Figure 2). 
The K-means algorithm was used to cluster the color information of the image (Sodjinou et al., 2021). The 
Gaussian filtering operation was used to reduce image noise to generate a binary mask image of the egg ROI 
(Figure 2 (c)). The Hough circle detection algorithm was then performed on the egg mask image to identify 
the center position coordinates and radius size information of the egg ROI (Figure 2 (f)). 



 
Figure 2: Image preprocessing 

 

Dataset preparation 

The 770 egg samples were first randomly divided into two groups by a ratio of 8:2. For the 10 images of the 
same egg, it was randomly split into two parts by a ratio of 7:3, eventually forming a training set and a 
validation set with 4312 images vs. 1848 images, respectively (Table 1). 

 

Table 1: The training and testing datasets of egg images 

i 
 
 
 

Eggshell biometric identification model development 

To capture more comprehensive and finer-grained image features, the ResNeXt was used, based on the 
principle of residual networks, and its structure is shown in Figure 3 (a). In this study, the specifically ResNeXt- 
50 (32×4d) network was adopted. The model backbone is primarily composed of five stages; stage0 includes 
1 convolutional layer, 1 BatchNorm layer, and 1 max pooling layer; stage1 to stage4 mainly extract features by 
multiple stacking grouped convolutional layers (CONV2_X, CONV3_X, CONV4_X, CONV5_X), using the 
residual structure; finally, connect the global average pooling layer. The ResNeXt-50 (32×4d) architecture is 
shown in Figure 4. 

  Train 
Train set 

ng data  
Validation set 

Testing data 

Egg classes 616 616 154 

Egg images 4312 1848 1540 

 



 
Figure 3: (a) ResNeXt flow diagram, (b) Residual block structure of ResNet-50 and ResNeXt-50 

 

Figure 4: The ResNeXt-50 (30×4d) architecture 
 

Figure 5: The architecture of egg biometric identification (EBI) model 
 

Eggshell biometric identification can be divided into two stages, namely eggshell feature extraction by 
ResNeXt module and eggshell feature matching by egg identification module. The feature extraction module 
was obtained by deleting the last Softmax layer of the ResNeXt-50 network structure and output feature 
vectors. The eggs matching module mainly included feature vector registration and similarity calculation. The 
identification result was determined by calculating the similarity between the feature vectors based on 
Euclidean distance (Kumar et al., 2022). The feature extraction module and matching module were combined 



and entitled EBI model in this study. The architecture of the EBI model is shown in Figure 5. 
 

Results and discussion 

Model training for eggshell feature extraction 

The accuracy and loss curves of the training and validation datasets at the batch size of 64 are shown in 
Figure 6. The model obtained a validation accuracy of 96.30% with the lowest loss value of 0.2300 at 39th 
epoch. The training accuracy and loss were 95.30% and 0.5240 respectively, indicating that the model 
performed well on the training dataset. 

 

Figure 6: (a) Accuracy curves, (b) Loss curves of the training and validation datasets 
 

A total of 13,860 intra-class matching and 2,356,200 inter-class matching were performed. According to the 
pre-experimental results, and the changes of FAR and FRR under threshold values between 15.00 and 20.00 
are shown in Figure 7(a). The receiver operating characteristic (ROC) curve is further given in Figure 7(b). 

 

Figure 7: (a) Changes of FAR and FRR, (b) ROC curve of the egg identification model 



Eggshell biometric identification performance 

Eggshell images from six different eggs (inter-class) and six images from one individual egg (intra-class) were 
randomly selected and fed into the developed feature extraction model. The feature maps of the five stages 
of the network during the forward pass were visualized as shown in Figure 8. It can be seen from the feature 
maps extracted from each convolution layer that the low-level convolution layer extracted the texture 
features of the image, while the more abstract features were obtained from the high-level convolution layer. 
The inter-class showed significant differences in their feature maps, especially from Layer4_3. However, the 
intra-class showed small differences according to the obtained feature maps, especially from Layer4_2 and 
Layer4_3. 

 

Figure 8: Partial feature maps extracted from the convolution layers 
 

Figure 9: (a) Probability distribution histogram, (b) significance result 



The Euclidean distances of inter-class matching and intra-class matching were further analyzed statistically. 
The probability distribution histogram shows that the inter-class and intra-class differences of each eggshell 
feature conform to the Logarithmic Normal distribution (Figure 9). The Kernel Density Estimation curve 
shows an obvious bimodal shape, indicating that the matching results of intra-class and inter-class are 
distinct. The Euclidean distance at the peak of intra-class nears 9, while the inter-class nears 27. The mean 
Euclidean distance of intra-class is 10.50 and the mean Euclidean distance of inter-class is 36.61. Furthermore, 
the distance of the inter-class is significantly larger than the intra-class (P < 0.0001), indicating that there 
exists a reasonable threshold to distinguish individual egg. According to the results above, the proposed 
model achieving the individual egg identification with a correct recognition rate (CRR) of 99.96% and an EER 
of 0.02% under the threshold is 17.18. 

 

Conclusions 

Recent related researches have explored approaches to egg identification, such as the instrumental analysis 
of the egg’s chemical composition, and the detection of defective eggs through computer vision technology. 
However, no practical method has been developed for the rapid and accurate identification of individual egg. 
In this study, an improved convolutional neural network algorithm, named EBI model, was proposed to 
identify the biological features of egg and obtained more accurate results than chemical analysis methods. 
Specifically, in the egg identification test, the CRR of the model was 99.96% and the EER was 0.02%, and the 
model could distinguish different egg identities significantly. The amount of data in the dataset and the 
complexity of eggshell biometric characteristics may affect the recognition accuracy of EBI model. Our goal 
is to promote this approach for egg identification in the egg industry, thereby realizing the application of 
product tracing and anti-counterfeiting. This will help alleviate the problem of egg information forgery, 
protect the rights and interests of egg companies and consumers, and also assist companies in their 
production management. 
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