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Abstract 

In the USA, the primary restaurants or grocers have pledged to buy cage-free (CF) eggs only by 2025 or 2030. 
However, CF production has several concerns such as floor eggs. Floor eggs have a high chance of 
contamination by manure resulting in a food safety concern. Manual collection of floor eggs is labor 
intensive. The objectives of this study were to develop a machine vision method and test the performance in 
detecting eggs on litter floors timely. The YOLO (You Only Look Once), an advanced object detection 
technology with very high precision and speed compared to CNN-based algorithms (e.g., R-CNN, Faster R- 
CNN, Mask R-CNN, etc.), was used as a model structure. In this study, we trained "YOLOv5s" network to 
detect floor eggs of laying hens in research cage-free facilities. Datasets were trained with a batch size of 16 
for 200 epochs using Virtual Machine GPU 3.1 provided by Oracle Cloud Infrastructure (OCI) with 6 Oracle 
CPUs and 90 GB of memory. Results show that the trained algorithm can detect the floor eggs with a 
precision of 87.9%, recall 86.8%, and mean average precision (mAP) of 90.9 %. Errors were led by image quality 
as there was dust accumulation on cameras. Cleaning camera frequently can enhance the accuracy of the 
model. 
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Introduction 

In the USA, the primary restaurants or grocers have pledged to buy cage-free (CF) eggs only by 2025 or 2030 
(Xin and Liu, 2017; Chai et al., 2017, 2018, 2019). Cage-free housing system allows birds to move freely inside 
the poultry housing with perches and nesting areas so that they can show their behaviors like perching and 
foraging (Ochs et al., 2018). However, CF production has several concerns such as floor eggs. The mislaid 
eggs on the floor are called floor eggs, which causes an increase in dirty eggs contaminated with feces and 
litter, even an increase in broken eggs as the bird's peck some eggs ( Jones et al., 2015; Li et al., 2020). This 
affects the overall quality of eggs along with hen-day production. In addition to degrading the overall quality 
of eggs, the manual collection is very labor extensive and time-consuming. One possibility to solve this 
problem is the use of technology. For example, the detection of floor eggs as an object with the help of deep 
learning and object detection can be used. This type of technique can be used for developing a robotic egg- 
picking system. 

Introducing artificial intelligence (AI) in poultry farming and management can improve multiple aspects of 
the poultry industry (Guo et al., 2020a, 2020b, 2021, 2022; Neethirajan, 2022). Machine learning techniques 
include object classification, detection, recognition, and tracking. Using these methods in livestock farming 
has led to options to monitor the health, disease, and normal and undesired behavior of animals in large- 
scale farms with high performance (Okinda et al., 2020). There was an application of automatic monitoring 
systems to detect and study floor eggs in a cage-free setting (Li et al., 2020). A deep-learning model for 
detecting cage-free hens with an accuracy of around 96 % was used (Yang et al., 2022). Deep learning was 
used to classify six different behaviors (standing, sitting, sleeping, grooming, scratching, pecking) of laying 
hens (Leroy et al., 2005). YOLOv5 model was used to detect the feather pecking behavior in cag-free laying 
hens (Subedi et al., 2023a). A computer vision system to quantify individual hens' behaviors that show 
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scratching behaviors (Leroy et al., 2006). The interference and obstruction of poultry behaviors and various 
zones like feeding, drinking, and resting with machine vision methods were also studied (Guo et al., 2020). 
Early studies proved that floor eggs could be detected with computer or machine vision-based methods. 
Researchers have investigated robotic applications on hen floor egg reduction, production performance, 
stress response, bone quality, and behavior (Li et al., 2022). A vision-based floor-egg detector was developed 
based on three convoluted neural networks, i.e., single-stage detectors (SSD), faster R-CNN, and R-FCN, with 
the faster R-CNN detector having precision, recall, and accuracy 91.9%–100% in floor egg detection. 

The objectives of this research were to develop a machine vision method to 1) detect the floor eggs in cage- 
free housing systems, 2) test the method's performance in research CF houses, and 3) figure out how to 
improve the detection accuracy of the model. In addition, we aimed to identify and locate floor eggs and test 
a newly developed automatic floor egg detection system based on image data analysis. 

 

Materials and methods 

Experimental setup 

We conducted our experiment at a research layer house on Athens's University of Georgia poultry research 
farm. The Institutional Animal Care and Use Committee (IACUC) of the University of Georgia, USA, approved 
animal use and management. Hy-Line hens (800 W-36) were raised in four cage-free houses (200 birds in 
each room from day 1), each measuring 7.3 m long × 6.1 m wide × 3 m high. Pine shavings were uniformly 
spread on the floor (5 cm depth) before bird arrival, and commercial feed was provided ad libitum. We 
followed layer management guidelines for Hy-Line W-36 commercial layers. An automatic environment 
system controlled the rearing condition, and set points were 21 – 23°C for air temperature during egg laying 
with 19L:5D lighting period and 20 lux intensity. In addition, daily hens' growth and environmental conditions 
were checked as suggested by the UGA Poultry Research Center Standard Operating Procedure Form. 

Data collection and preparation 

We mounted six night-vision network cameras (PRO-1080MSB, Swann Communications USA Inc., Santa Fe 
Springs, LA, USA) above the drinking system, feeders, and perches and in the wall at ~3 m above the ground 
to capture top-view videos and footage from sideways (Figure 1). In addition, different areas of eggs laid and 
hens' activities were continuously monitored, and videos were stored in digital video recorders (DVR-4580, 
Swann Communications USA Inc., Santa Fe Springs, LA, USA). The video files (.avi format) were recorded 
with a resolution of 1920 × 1080 pixels at a sample rate of 15 frames per second (fps) and converted to image 
files (.jpg) using Free Video to JPG Converter (ver. 5.0). 

 

Figure 1: Data collection using camera and video recorder. 



Definition of floor egg and Labeling 

In cage-free housing and aviary housing, there are many forage areas for birds and the eggs laid there are 
called floor eggs (Jones et al., 2015). We manually labeled each Egg from the laying hen to create a bounding 
box based on the definition. A dataset of 1050 images (750 training, 250 validations, and 50 test) was created 
to analyze the floor eggs laid. A day of videos, 16 h in one day, was used. The images containing eggs laid 
were used for the labeling. The labeling was conducted in open-source software (Makesense.AI), and we 
created the bounding box around the region of interest (Subedi et al., 2023a, 2023b). The dataset was split 
into two folders, i.e., training and validation, set in the ratio 70:30. These two folders were divided into two 
subfolders, Images, and Labels. Finally, we got the annotation file in .txt format (text file). 

You Only Look Once (YOLO) model 

YOLO (You Only Look Once) is a single-stage object detector algorithm developed in 2015 by researchers 
Joseph Redmon and Ali Farad. Compared to R-CNNs and Fast/Faster R-CNNs, YOLO has higher accuracy and 
speed using Single Stage Detectors (SSDs) that helps improve the speed and eliminates the use of Region 
Proposal Network (Tulbure et al., 2022). YOLO has had tremendous success in real-world applications and 
has sprung many different versions of models. TinyYOLO, YOLOv2, v3, v4, v5, and YOLOx scaled-YOLOv7, 
YOLO with various backends, etc. The most popular model of YOLO used in the industry was YOLOv3. The 
Ultralytics implementation of YOLOv5 is widespread (Bochkovskiy et al., 2020). Pretrained YOLO models, 
especially on the COCO dataset, are readily available and easy to use. COCO is a large image dataset for object 
detection, segmentation, person key points detection, stuff segmentation, and caption generation. For 
laying hens' images/videos, the dataset has annotations for bounding boxes and image segmentation with 
one object class named Egg. In the newly innovated model, images collected at multiple locations and scales 
with high-scoring regions of the image were considered in tracking/detection. Taking the whole image of 
hens at test time and evaluating predictions using the single network is a significant advantage of YOLO over 
classifier-based systems (Guo et al., 2022). In YOLO, the individual hens' image was split into a grid (S x S - 7 
x 7), and then each cell predicted the bounding boxes (x, y, w, h) and the confidence of each box with the 
Probability that box has an object (Egg). Then each cell has bounding boxes and the associated probabilities 
of each box having an object. Each cell predicted a class probability. Each cell provided the probability of the 
object class, e.g., P (Egg). 

Architecture of the YOLOv5s model 

The model of YOLOv5s was developed based on the YOLOv5 network, which consists of three parts: a 
backbone, a neck, and an output for object detection. The backbone network is CSPDarkNet53, with four 
feature maps of different sizes, and was used for feature extraction ( Shen et al., 2022; Bochkovskiy et al., 
2020). The neck helps extract feature maps (eggs) to obtain information and reduce loss directly connected 
to the backbones. The feature pyramid structures of the Feature Pyramid Network (FPN) and Path 
Aggregation Network (PAN) are used in the fusion process (Liu et al., 2018; Shen et al., 2022). FPN structure 
conveys powerful semantic features from the top feature maps into the lower feature maps, and the PAN 
structure gives strong localization features from lower feature maps into higher feature maps. By using PAN 
as the neck of the model, the input is the feature map output from the backbone, which is feature-fused to 
obtain features with richer semantic information to be sent to the Head for detection. Head helps to perform 
the final detection part, which generates final output vectors with class probabilities, objectness, scores, and 
bounding boxes. The CBL module consists of convolution, normalization, and a Leaky Rectified Linear Unit 
(ReLu) activation function. There are two kinds of cross-stage partial (CSP) networks, one in the backbone 
network and the other in the neck. The CSP network can improve the inference speed while maintaining 
precision by reducing model size. (Wang et al., 2020). In addition, the Spatial Pyramid Pooling (SPP) module 



also executes the maximum pooling with different kernel sizes and fuses features by concatenating them 
together (He et al., 2014). The Concat module represents the tensor concatenation operation. 

Evaluation metrics 

Precision, Recall, and mean average precision (mAP) provide an essential reference index to evaluate the 
model's performance (Subedi et al., 2023a). Precision represents the proportion of all predicted positive 
samples that were correctly detected. It is the ratio of correctly predicted positive observations, i.e., Egg, 
to the total predicted positive observations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 
 

The recall represents the proportion of all positive samples successfully detected. It is the ratio of correctly 
predicted positive observations to all observations in the actual class – Egg. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

Mean average precision (mAP) was calculated as follows: 
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P(i) is the precision, and 𝛥R(i) is the change in recall from the ith detection. For all the above metrics, closer 
to 100% value reflects a better performance of the detectors. 

 

Results and discussion 

Model performance in floor eggs detection 

The confusion matrix (Figure) is made up of four components, i.e., True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN), in assessing the performance of YOLOv5s: The TP was 0.94 when 
the classifier predicted TRUE (i.e., the image has the Egg), and the correct class was TRUE (i.e., the image has 
the Egg); 2) The TN was 0, cases when the model predicted FALSE (i.e., no Egg), and the correct class was 
FALSE (i.e., images do not have an Egg); 3) FP was 1 (Type I error) that classifier predicted TRUE, i.e., the image 
has Egg, but the correct class was FALSE (i.e., the image did not have Egg); and 4) The FN was 0.06, which 
indicates that the classifier predicted FALSE (i.e., the image does not have Egg), but images do have the floor 
eggs (Subedi et al., 2023b). 

Performance of YOLOv5s in data training and validation 

The training and validation process loss function rapidly decreased in 300 epochs. Box loss is bounding box 
regression loss (Mean Squared Error), and object loss is the confidence of object presence is the objectness 
loss (Binary Cross Entropy). mAP@0.5: 0.95 represents the average map at different IOU thresholds (from 
0.5 to 0.95, step 0.05). (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). The average mAP over different 
IoU thresholds ranges from 0.5 to 0.95. The 'mAP_0.5' is the mean Average Precision (mAP) at IoU 
(Intersection over Union) threshold of 0.5. It indicates an average map with a threshold greater than 0.5 
(Zhang et al., 2022; (Subedi et al., 2023b). 

Testing results of new models in detecting floor eggs 
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The optimized model, after training, was used to detect the floor eggs in new unlabeled images. The Figure 
2 shows some examples of the automatic detection of floor eggs. The YOLOv5s model could detect the eggs 
with a precision of 87.9%, recall of 86.8%, and mean average precision (mAP) of 90.9%. The uncertainties or 
errors were caused by dust accusation on cameras, interferences of equipment (e.g., feeders and drinkers), 
and birds’ body. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

` 
Figure 2: Performance of YOLOv5s in floor eggs (Subedi et al., 2023b). 

 

Conclusions 

In this study, an advanced object detection technology (i.e., the YOLO model) was used as the model 
structure for developing YOLOv5s network to detect floor eggs in research cage-free houses. The YOLOv5s 
performed well in terms of accuracy, precision, mAP, and recall. This study provides a reference for cage-free 
producers that floor eggs can be monitored automatically. Future studies are guaranteed to test the system 
in commercial houses. Furthermore, the detection of floor eggs as an object with the help of deep learning 
and object detection can be used for developing a robotic egg-picking system. 
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