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Abstract 

Australian beef cattle are located across a diverse landscape, and our new, increasingly extreme climate is 
impacting the sustainability of this typically extensive production system. Resilient cattle and 
complementary management approaches are required for this new environment. Previous work has used 
milk yield variability as an indicator of dairy cattle resilience linking low variability in production with greater 
resilience; however, there is a paucity of work using the same method for beef cattle. Here we determine 
growth variability within a herd using 37,621 live weight observations from 3,813 cattle over two years. 
Liveweight (LW) was measured using the Optiweigh system, where LW was obtained opportunistically in- 
paddock as cattle access a molasses-based lick block. Firstly, data were pre-processed in three steps, and 
growth curves for each animal were created using a linear mixed model. Each animal's residual standard 
deviation (SD) of LW (SD of the residuals about the fitted model) was calculated as a measure of resilience. 
The lowest, mean, and highest residual SD were 4.41 kg, 10.24 kg, and 21.67 kg, respectively. Cattle with the 
lowest residual SDs were less variable around their LW growth trajectory, indicating they could cope with 
extreme climatic events. In conclusion, the residual SD is a promising resilience indicator, with the reasons 
for the diversity in this indicator forming the basis for further work. 
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Introduction 

The Australian cattle industry is one of the significant contributors to the Australian economy, where beef 
production represents about one-fifth of Australia's total agriculture production value (Meat and Livestock 
Australia, 2020). Beef production systems in Australia have diversified (Bell et al., 2011) and are typically 
extensive. The productivity of these extensive cattle systems is affected by extreme climate or weather 
events (Ali et al., 2020), with the incidence and severity of these events likely to increase (IPCC, 2007). Despite 
this, there is significant variability in how cattle cope with the same environment determined by on-animal 
sensors monitoring animal behavior (Islam et al., 2021). An animal is considered resilient if it is minimally 
affected by the environmental impact or soon regains its average level of productivity (Berghof et al., 2019). 
Determining such diversity in resilience and the capacity to cope with environmental stresses will be critical 
for future genetic selection of beef cattle for our increasingly extreme environment to maintain the industry 
as a significant contributor to the Australian economy. However, such herd-level data for extensive systems 
are lacking due to issues with connectivity and cost (Burrow, 2012). By incorporating new knowledge fields 
like phenomics and 'big data,' management programs that maximize productivity and animal welfare while 
minimizing the environmental impact can be created (Vélez-Terranova, 2019). The creation of automated 
cattle phenomics will be made possible by big data, supporting innovations in genetic improvement and 
precision pasture, lifecycle, and supply chain management. Poppe et al. (2020) used a data-driven approach 
to explore variability in daily milk levels around a lactation curve as indicators for breeding resilient cows. 
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These approaches were predicated on cows continually being exposed to unidentified disruptions, which led 
to variations in routinely measured features. Compared to cows with higher variation, those with fewer 
fluctuations were less susceptible to perturbations. As a result, the fluctuation pattern was anticipated to 
reveal information concerning resilience. However, no thorough research has been done on applying such 
data-driven methodologies employing substantial data on beef cattle production to understand how 
extreme climate events affect a large-scale beef production system. This study aimed to collate and create 
individual cattle liveweight (LW) change profiles from sporadic, field-based LW data to explore the variability 
in the response of cattle LW change profiles to climate extremes. 

 

Figure 1: Optiweigh used at Nowley Farm, NSW, measuring cattle liveweight 
 

There are numerous ways to measure and record animal liveweight. Static weigh (SW) systems capture the 
LW of animals in most scenarios but require animals to be moved to weighing scales within a fixed set of 
yards, which is laborious and time-consuming (Alawneh et al., 2011). In contrast to the SW or other systems, 
the Optiweigh (OW) is a mobile system that can be towed and set up with each paddock rotation without 
additional fencing or infrastructure (Figure 1). Optiweigh scales facilitate the remote collection of LW data 
individually, voluntarily, but sporadically. The system determines front-end weight, which estimates the 
overall LW (Strohbehn, 2008). While remotely recorded cattle LW data can assist in on-farm decision-making 
(Mardhati et al., 2021), novel phenotypes based on these data offer an excellent possibility for selective 
breeding for greater cattle resilience. The longitudinal phenotypic and environmental profiles enable the 
development of markers to enhance animal resilience (Mulder, 2017). By analyzing the opportunistically 
collected LW data from the OW system, growth curves can be fitted, and from these, resilience estimated. 

 

Materials and methods 

Data collection 

Liveweight data were collected using the Optiweigh (Platinum Agribusiness, NSW, Australia) system from 
various locations in Australia from 28 March 2021 to 12 January 2022. However, only the data from a single 
client with a maximum number of cattle were utilized for the current analysis. 



Data pre-processing 

Descriptive statistics were calculated for raw data before and after pre-processing. The total number of LW 
records across the experimental period was 37,621 from 3,813 cattle. The data pre-processing steps were as 
follows: 

1. One record per day: if there were multiple LW records for a given animal on a given day, the mean 
LW value was used, resulting in one record for the animal on that day. 

2. Monitored for greater than 28 days: the monitored animal had to have more than 28 days from its 
first to last weight recording. 

3. Removed cattle with less than ten records: minimum dates per animal were ten. 

The number of observations and cattle at each step is shown in Table 1. 

Table 1: Data pre-processing steps, number of observations, and cattle present after each pre-processing step 

Pre-processing step Number of 
observations 

Number of cattle 

Original data set (one herd) 37,621 3,813 
One record per day 19,149 3,813 
Monitored for greater than 28 days 14,297 1,669 
Removed cattle with less than ten records 8,731 553 

Statistical Model 

A two-stage approach was used to evaluate the individual cattle LW variability and the pattern of variability 
in the LW data. First, individual animal growth curves were produced using a linear mixed model with splines, 
also known as a generalized additive mixed model (GAMM). The model fitted to the LW data was: 

Weightit = β0 + (β1 + b1i) t + Animali + s(t) + si(t) + εit 

where Weightit is the liveweight (kg) of animal i recorded on day t, with fixed effect parameters β0 (intercept) 
and β1 (overall linear growth rate); Animali is the random intercept effect for animal i; b1i is a random effect 
for the deviation of the linear trend of the animal i, s(t) is an overall smoothing spline function of time t; si(t) 
is the smoothing spline deviation for animal i, and εit is a random error. 

The model was fitted using ASReml-R via the asreml package (Butler et al., 2017) in the R environment (R 
Core Team, 2020). Note that for ASReml-R, all spline terms are fitted as random effects in the model. For 
both splines, five knots were used as an appropriate amount of smoothing. Residual diagnostic plots were 
obtained, and records with a standardized residual over 4 in absolute value were removed from the data set 
and the model re-fitted. For the second stage, residuals were obtained from the fitted model, and the SD of 
these was calculated for each animal (Residual SDs). 

 

Results and discussion 

Our study determined cattle variability in the fluctuation of liveweight yield as an indicator of resilience. 
Liveweight data from the OW system before and after pre-processing is shown in Figure 2, and the model- 
based growth curves for each animal derived from these data are shown in Figure 3. 



 
 

Figure 2: Optiweigh liveweight data for a herd before (on the left) and after pre-processing (on the right); 
different colors are used for each animal. 
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Figure 3: Model-based each cattle smoothed growth curve over the data collection period. 
 

After extracting the residuals from the fitted models, a histogram of the residual SDs for each animal around 
the model-based growth curve is shown in Figure 4. 
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Figure 4: Histogram of each cattle standard deviation of the residuals as a resilience indicator. 
 

The lower the residual SD, the less variable the LW of individual cattle around their growth trajectory. 
Further, some cattle were more variable than others, where the lowest and highest residual SDs 4.41 kg and 
21.67 kg, respectively, as shown in Figure 5. Cattle with the lowest and highest residual SDs were extracted, 
and LW was plotted around their growth curves. In Figure 5, animals A and B had residuals of SD 4.41 and 
4.49 kg, with low variation around their growth curves, and therefore were assumed to be more resilient. In 
contrast, animals C and D had residuals of SD 18.02 and 21.67 kg, indicating less resilience. Ehsaninia et al. 
(2019) and Elgersma et al. (2018) suggested that the variance of milk yield is a resilience indicator. Our 
findings are directly in line with this hypothesis. 
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Animal A, Residual SD = 4.41 kg Animal B, Residual SD = 4.49 kg 
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Animal C, Residual SD = 18.02 kg 
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Animal D, Residual SD = 21.67 kg 
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Figure 5: Identified cattle having the lowest (A, B) and highest (C, D) residual SD as an indicator of resilience in 
the extensive production system. 

 

Although there is a dearth of studies to which our findings can be compared, Poppe et al. (2020) also 
explored milk yield fluctuation as an indicator for breeding resilient dairy cattle, with less fluctuation in dairy 
milk yield indicating greater resilience. The causes of LW variability could be biological variability or other 
extraneous events. Therefore, there is a need to identify the causes of variability between animals or 
locations for identifying new phenotypes for genetic selection. 
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Conclusions 

Our work shows substantial variability between cattle in their LW fluctuation, as measured by each animal's 
residual standard deviation. This resilience indicator has promise for identifying cattle better at coping in the 
extensive production system. Future work aims to determine the association between these findings and 
weather variables, expanding this work to include more cattle from more herds. This research serves as a 
crucial first step in exploring the interaction between the environment and animals in extensive 
environments. 
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