
Real-time implementation of computer vision based farrowing prediction in pens 
with a possibility of temporary sow confinement 

M. Oczak1,2,* and J. Baumgartner2 
1Precision Livestock Farming Hub, The University of Veterinary Medicine Vienna (Vetmeduni Vienna), 
Veterinärplatz 1, 1210 Vienna, Austria 
2Institute of Animal Husbandry and Animal Welfare, University of Veterinary Medicine Vienna (Vetmeduni 
Vienna), Veterinärplatz 1, 1210 Vienna, Austria 
*Corresponding author: Maciej Oczak, maciej.Oczak@vetmeduni.ac.at 

 

Abstract 

Due to growing concern over the welfare of livestock and changing legislation in the European Union pig 
farmers will have to adopt new management methods in farrowing pens. An important challenge related to 
implementation of temporary sow confinement is the optimal timing of confinement in crates, considering 
the sow welfare and piglet survival. In total, 71 sows and four types of farrowing pens were included in the 
observational study. To automatically detect the optimal timing of sow confinement we applied computer 
vision model You Only Look Once X (YOLOX) to detect sows’ locations, calculated activity level of sows’ 
based on detected locations and detected changes in sows activity trends with Kalman filtering and fixed 
interval smoothing algorithm. Results indicated the beginning of nest-building behaviour with a median of 12 
h 51 min and ending with a median of 2 h 38 min before the beginning of farrowing based on centroids of 
sows extracted with YOLOX-large object detection model. It was possible to predict farrowing with good 
performance on validation dataset i.e. for 29 out of 44 sows, considering that the object detection model 
had to be trained on the farrowing pens present in the validation dataset. The developed method could be 
applied to warn the farmer when nest-building behaviour starts and then to confine the sow in a crate when 
the end of nest-building behaviour is detected. This could reduce labour costs otherwise required for regular 
control of sows in farrowing compartments. 
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Introduction 

In societies of European Union (EU) member states there is a growing concern over the welfare of livestock. 
Specifically, phasing out and finally prohibition of the use of cage systems in the EU was proposed in the 
Citizens' Initiative “End the Cage Age”, which was signed by over 1.4 million EU citizens and supported by 
the European Commission (EU 2021). Moreover, in recent years national legislation on animal welfare in two 
EU member states imposed limitations on the use of crates in farrowing pens i.e. to only the critical period 
of piglet lives in Austria (BMGÖ 2012) and to a maximum of 5 days in Germany (BMEL 2021). These limitations 
will become mandatory for pig farmers in both countries in 2033 and 2036, respectively. As a consequence 
pig farmers in the EU will have to adopt new management methods in farrowing pens i.e. temporary sow 
confinement. 

An important challenge related to implementation of such a management system is the optimal timing of 
sow confinement in crates, considering the sow welfare and piglet survival. One of the possibilities is to 
confine sows in crates after the nest-building behaviour is finished but before farrowing starts (Goumon et 
al., 2022). However, in practical farm conditions, due to the biological variability in gestation length (Sasaki 
and Koketsu 2007), such precision in confining sows is only possible if farm staff performs time-consuming 
observations of sow’s behaviour, including in the night time. 
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Precision Livestock Farming (PLF) has potential to automatise monitoring sows’ behaviour in farrowing pens 
and to indicate the right timing of sow confinement in crates i.e. at the end of nest-building behaviour (Oczak, 
Maschat, and Baumgartner 2020). As a first step in development of computer vision methods for farrowing 
prediction we aim to test if similar performance of farrowing prediction as with other sensor technology i.e. 
ear-tag accelerometer (Oczak, Maschat, and Baumgartner 2020), can be achieved with computer vision 
applied for monitoring the activity level of sows. 

In this study we aim to select the optimal method of You Only Look Once X (YOLOX) object detection 
algorithm i.e. nano, tiny, small, medium, large or extra large, for activity monitoring of sows in real-time (Ge 
et al., 2021). YOLOX also surpasses RetinaNet, used by us in the previous research, in terms of speed and 
accuracy (Lin et al., 2017). We hypothesise that YOLOX will provide an optimal trade-off between the speed 
and accuracy for activity monitoring in farrowing pens. We aim to test the performance of YOLOX methods 
on unseen farrowing pens and animals. The second objective was to validate the previously tested Kalman 
filtering and fixed interval smoothing (KALMSMO) algorithm, for farrowing prediction (Oczak, Maschat, and 
Baumgartner 2020). This aims to test if the KALMSMO algorithm can achieve similar performance for 
farrowing prediction independently of whether activity of sows was estimated based on an accelerometer 
data, as in our previous research (Oczak, Maschat, and Baumgartner 2020), or image data. 

 

Materials and methods 

Animals and housing 

The observation was conducted in 2 stages at Medau, the pig research and teaching farm (VetFarm) of the 
University of Veterinary Medicine Vienna, Vienna, Austria. The first dataset was collected between June 2014 
and May 2016, while the second one between December 2021 and July 2022. In total, 71 Austrian Large White 
sows and Landrace × Large White crossbreds sows were included in the trials. The sows were kept in four 
types of farrowing pens with the possibility of keeping a sow either unconfined or in a farrowing crate. Out 
of 71 sows, 9 were kept in SWAP (Sow Welfare and Piglet Protection) pens (Jyden Bur A/S, Vemb, Denmark), 
9 in trapezoid pens (Schauer Agrotronic GmbH, Prambachkirchen, Austria), 9 in wing pens (Stewa Steinhuber 
GmbH, Sattledt, Austria) and 44 in BeFree pens (Schauer, Prambachkirchen Austria). None of the animals 
included in the observations was confined in a farrowing crate from the introduction to the farrowing pen 
until the end of farrowing. 

The observational period was from the introduction of the sow to the farrowing room until the end of 
farrowing. The farrowing pens that were recorded as part of the first dataset i.e. SWAP, trapezoid and wing, 
were located in the testing unit of the farm. The second dataset contained only BeFree pens which were 
located in the production unit of the farm. 

 

Figure 1; Farrowing pens with possibility of temporary crating. (a) SWAP pen, (b) trapezoid pen, (c) wing pen and 
(d) 2 BeFree pens 



Video recording 

The behaviour of sows was video recorded from introduction to the farrowing pens until the end of 
farrowing with two-dimensional (2D) cameras in order to create a dataset that could be labelled. Each pen in 
the first dataset (SWAP, trapezoid and wing pens) was equipped with one IP camera (GV-BX 1300-KV, 
Geovision, Taipei, China) locked in protective housing (HEB32K1, Videotec, Schio, Italy) hanging 3 m above 
the pen, giving an overhead view. In dataset 2 each IP camera (GV-BX2700, Geovision) was installed with a 
top view on 2 farrowing pens (BeFree). Additionally, above each farrowing pen in both datasets infrared 
spotlights (IR-LED294S-90, Microlight, Moscow, Russia) were installed in order to allow night recording. The 
images were recorded with 1280 × 720 pixels resolution, in MPEG-4 format, at 30 fps for dataset 1, while for 
dataset 2 at 25 fps. 

The cameras used for recording of the first dataset (SWAP, trapezoid and wing pens) were connected to a 
PC on which Multicam Surveillance System (8.5.6.0, Geovision, Taipei, China) was installed. The system 
allowed simultaneous recording of images from 9 cameras. The PC had a processor Intel5, CPU 3330, 3 GHz 
(Intel, Santa Clara, CA, USA) with 4 GB of physical memory. The operating system was Microsoft Windows 7 
Professional (Redmond, WA, USA). The first dataset was stored on exchangeable, external 2 and 3 TB hard 
drives. The cameras used for recording of the second dataset (BeFree pens) were connected to a server for 
storage of video data (Synology, Taipei, Taiwan) with 4 cores, 8GB memory and 260TB storage. 

Dataset 

The dataset was composed of video recordings collected in a period from introduction to farrowing pen until 
24 h after the end of farrowing. The dataset 1, which contained recordings of 27 sows in SWAP, trapezoid and 
wing pens, was used for training of YOLOX object detection models and contained 4,667 h of video 
recordings. The dataset 2, which contained recordings of 44 sows in BeFree pens, was used for testing of 
YOLOX object detection models, calculation of activity of sows and implementation of KALMSMO farrowing 
prediction models. It contained 17,713 h of video recordings. The division of recorded videos on dataset 1 and 
2 was motivated by the first objective of this study i.e. to test the performance of YOLOX methods on unseen 
farrowing pens and animals. This dataset division allowed simulation of the expected performance of the 
models when implemented in a new environment. 

Data labelling 

To create a reference dataset on the basis of which further data analysis could be performed we labelled the 
time of the beginning of farrowing of each individual sow (n = 71). It was defined as the point in time when 
the body of the first-born piglet dropped on the floor. The time of birth of the last piglet indicated the end 
of farrowing. Labelling software Interact (version 9 and 14, Mangold International GmbH, Arnstorf, Germany) 
was used to label the beginning and ending of farrowing in dataset 1. For labelling of dataset 2 we used 
labelling software Boris (version 7.9.15). 

For dataset 1 frame selection was performed according to the procedure described in Oczak et al. (2022). For 
the purpose of selection of specific frames to be used for labelling we applied the k-means algorithm 
described in Pereira et al. (2019). K-means algorithm was used to select images with the least correlation. In 
the dataset the k-means algorithm identified 14 242 frames that were the most different between each other 
(Table 1). One object class was labelled by a trained human labeller on each frame out of selected 14,242 
frames i.e. body of the sows. Computer Vision Annotation Tool (version 3.17.0) was used to label the frames 
(Sekachev et al., 2020). Sow’s body was labelled with a rectangle so that the centre of an object was placed 
in the centre of the rectangle. 



Table 1: Selected frames with k-means algorithm for dataset 1 and 2. 

Dataset Duration of video 
recordings [h] 

Frames selected from periods N. frames 
selected 

 
 

 

1 4,667 introduction to farrowing pen, one day 
before farrowing, day of farrowing 

14,242 

 

2 17,713 from introduction to farrowing pen to 
one day after farrowing 

1,000 

 
 

For dataset 2 frame selection was performed similarly as for dataset 1 with the same k-means algorithm. 
However, we selected 500 frames from all the videos recorded for all sows in dataset 2, recorded in a period 
from introduction to the farrowing pen until one day after farrowing. Because in dataset 2 there were 2 sows 
under one camera view (Figure 1d) the number of frames used for labelling of sows was increased to 1000 
by masking the view on either right or left BeFree pen. In dataset 2 one object class was labelled on each 
frame out of selected 1,000 frames i.e. body of the sows. Coco annotator was used to label the frames 
(version 0.11.1) (Brooks 2019). 

YOLOX object detection model 

The OpenMMLab toolbox was used to train, validate and test the methods of YOLOX i.e. nano, tiny, small, 
medium, large and extra large. Parametrization of the methods of YOLOX was used as implemented in 
MMDetection i.e. optimizer stochastic gradient descent (SDG) with learning rate 0.01 and momentum 0.9. 
Similarly images were augmented as implemented in MMDetection with mosaic, random affine, mixup, 
random horizontal flip and colour jitter. No changes were made to the architecture of YOLOX methods, 
optimizer or augmentations provided in MMDetection. Python version 3.8 was used with MMDetection. 

We designed 2 experiments to test the performance of methods of the YOLOX algorithm in terms of 
generalisation ability and inference speed. In both experiments out of 15,242 labelled images, 9,969 (65.4%) 
were randomly selected for the training set, 4,273 (28%) for the validation set and 1,000 (6.6%) for the test 
set. In experiment 1 training and validation sets included images from dataset 1, while test set from dataset 
2. Thus, in experiment 1 it was possible to test the generalisation ability of the YOLOX on new unseen sows 
and farrowing pens (BeFree). In experiment 2 all 4 pen types and sows were represented in training, 
validation and test sets (Figure 2). 

 

Figure 2: Experiments 



Training was set to 100 epochs and was done on RTX Titan (NVIDIA, Santa Clara, US) with evaluation of 
validation and test set performances with every 5 epochs. Performance of the models was evaluated with 
standard 12 COCO evaluation metrics e.g. Average Precision (AP) and Average Recall (AR) (Lin et al., 2014). 
The optimal model was selected by the highest value of the primary COCO challenge metric Average 
Precision AP on the test set in both experiments. Speed of inference for each YOLOX method was estimated 
by inferring sows’ locations with MMDetection function inference_detector on 1000 frames in the test set. 

Activity level of sows 

Two best performing models, one from experiment 1 and a second one from experiment 2, were used to 
extract sows’ locations in the videos recorded in the sow observational period, in BeFree pens. Bounding 
boxes indicating sows’ location were extracted in 1 fps out of videos recorded in 25 fps. In the next step 
euclidean distance was calculated between centroids of extracted bounding boxes. Euclidean distance was 
further smoothed with a mean calculated on a sliding window of 24 h with 15 min steps, similarly as in Oczak 
et al. (2020) where standard deviation was used on the same window size and the same step to process ear- 
tag accelerometer data. This allowed elimination of variation in activity related to diurnal rhythms. Activity 
level was not labelled by a human labeller but only automatically detected by computer vision technique. 

Farrowing prediction 

To estimate the dynamics of activity of sows the Kalman filtering and fixed interval smoothing (KALMSMO) 
algorithm was used as described in Oczak et al. (2020) with the same values of hyper-parameters of the 
model. The KALMSMO algorithm was fitted to an input variable i.e. euclidean distance at a fixed interval of 
48 h and expanded recursively by 15 min steps until the trend in animal activity changed to significantly 
increasing. The increase in activity trend was indicated by euclidean distance reaching a higher value than 
the upper confidence interval of the estimated trend. Then the “first-stage” alarm was raised. The preferred 
time frame for the “first-stage” alarms was within 48 h before the onset of farrowing, and the alarm was not 
supposed to be generated after the onset of farrowing (Oczak, Maschat, and Baumgartner 2020). The 
“second-stage” was raised when the trend in animal activity changed to significantly decreasing. This was 
indicated by the input variable reaching a lower value than the lower confidence interval of the estimated 
trend. This alarm could be interpreted as an indication that nest-building behaviour had ended. The preferred 
time frame for the “second-stage” alarm was after the “first-stage” alarm (within 48 h before the onset of 
farrowing) and not later than the end of farrowing (Oczak, Maschat, and Baumgartner 2020). 

Analysis was performed with a commercial software package (MATLAB 2019b, The MathWorks, Inc., Natick, 
US) and function irwsm of CAPTAIN toolbox (Young 2006) was used to fit the KALMSMO algorithm. 

 

Results and discussion 

Performance of models in experiment 1 was generally worse than in experiment 2. The best model for 
detection of sows in farrowing pens, on unseen environments i.e. BeFree pens was YOLOX-medium, which 
had the highest AP of 84.2 on the test set in comparison to the other models. In experiment 2, the model 
with the highest AP of 95.4 on the seen environment was YOLOX-large. Thus, for extraction of centroids of 
sows these two models were used, YOLOX-medium trained for 70 epochs and YOLOX-large trained for 100 
epochs (Table 2). 

In the study of Küster et al. (2021) YOLOv3 was used to detect different parts of sows’ bodies in farrowing 
pens i.e. heads, tails, legs and udder but not the whole sows’ bodies as in our study. They detected heads 
with 97 AP50, tails with 78 AP50, legs with 75 AP50 and udder with 66 AP50. Performance of YOLOX-large used 
in our study was better in detecting the whole bodies of sows with a perfect result of 100 AP50. YOLOv3 was 



also used in the study of van der Zande et al. (2021). However in this study the model was used to detect 
whole bodies of piglets in a group pen. Nearly perfect AP50 of 99.9 was achieved. In both studies, the first of 
Küster et al. (2021) and the second of van der Zande et al. (2021), validation of object detection models was 
performed on the same pens as the training of the models. This revealed the performance of the trained 
models in these pens. However, in PLF we aim to implement the trained models on multiple farms, in 
different pens and environments (Berckmans 2017). To test YOLOX’s generalisation ability we validated the 
models not only on seen but also unseen farrowing pens i.e. BeFree. The difference between performance 
of both models on the test set with BeFree pens, the first trained on BeFree and the second trained on the 
other farrowing pens was 11.2 AP, indicating the better performance of the model which was trained on 
BeFree pens. Results of farrowing prediction with the KALMSMO models indicated the “first-stage” alarms 
with median of 10 h 46 min and 12 h 51 min based on centroids of sows extracted with YOLOX-medium and 
YOLOX-large, respectively (Figure 3). “First-stage” alarms were raised slightly later (2 h 5 min) based on 
application of the YOLOX-medium model trained in experiment 1. This was confirmed by further analysis of 
distribution of alarms with the 1st quartile of “first-stage” alarms at 4 h 8 min in comparison to 6 h 2 min and 
the 3rd quartile at 16 h 17 min in comparison to 19 h 43 min. 

 

Table 2: Best performance of YOLOX methods evaluated by AP 

Experiment Dataset Method Epoch AP AP50 AP75 

1 validation YOLOX-large 100 96.9 99.0 98.9 

1 test YOLOX-medium 70 84.2 99.0 98.9 

2 validation YOLOX-medium 100 96.5 100 99.0 

2 test YOLOX-large 100 95.4 99.0 98.9 
 

Figure 3: Distribution of duration between time of alarms and beginning of farrowing. (a) Centroids of sows were 
extracted with YOLOX-medium trained in experiment 1. (b) Centroids of sows were extracted with YOLOX-large 
trained in experiment 2. 

 

Similarly “second-stage” alarms were raised slightly later based on application of the YOLOX-medium model 
trained in experiment 1 with median very near to the beginning of farrowing at 2 h 17 min in comparison to 2 



h 38 min based on the YOLOX-large trained in experiment 2. The other metrics of distribution of “second- 
stage” alarms represented a similar difference in timing between both models i.e. first and third quartiles 
(Figure 3). These results showed that the difference in performance of 11.2 AP between both YOLOX models, 
first trained in experiment 1 and second in experiment 2 had little impact on the difference in timing of “first 
and second-stage” alarms. 

However, the analysis also revealed that the “first-stage” alarms were not raised for 20 sows out of 44 (45%) 
when predictions of farrowing were based on centroids extracted with YOLOX-medium trained in 
experiment 1. This was much worse results in comparison to only 13 sows out of 44 (30%) when YOLOX-large 
trained in experiment 2 was used. 

Performance of the farrowing prediction model KALMSO applied for the first time on ear-tag accelerometer 
data in Oczak et al. (2020) was confirmed in our current study when model YOLOX-large trained in 
experiment 2 was used. In both studies the parameters of KALMSMO e.g. nose-to-variance ratio, CI limits, 
were the same. In Oczak et al. (2020) the “first-stage” alarms were raised in the 48 h period before the 
beginning of farrowing for 18 out of 26 sows (69%), while in this study for 29 out of 44 sows (66%). The 
“second-stage” alarms were raised for 17 out of 26 sows (65%) within 48 h before the beginning of farrowing 
until the end of farrowing in results of Oczak et al. (2020) and 28 out of 44 (63%) in our current study. The 
results of both studies were also very similar in terms of timing of the “first and second-stage” alarms. 

 

Conclusions 

For implementation of the farrowing prediction methodology on the other farms than VetFarm Medau we 
recommend application of YOLOX-medium trained in experiment 2 of our study for 70 epochs. This model 
seemed to generalise better than the other models on new unseen farrowing pens and it was trained on all 
4 types of farrowing pens available in our dataset. Presence of all farrowing pens in the training set might 
improve the performance of the model in new, unseen environments. The developed method could be 
applied to warn the farmer when nest-building behaviour starts and then to confine the sow in a crate when 
the end of nest-building behaviour is detected. This could reduce labour costs otherwise required for the 
regular control of sows in farrowing compartments. The future work will be focused on estimation of 
benefits for animal welfare from implementation of this monitoring system. 
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