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Abstract 

This work explores possibilities for monitoring animal welfare in an objective way by measuring physiological 
variables. Worldwide pneumonia is very common among calves. Sampling techniques have been developed 
to detect such pneumonia. The concern is to know whether these techniques impact animal welfare. The 
objective of this paper is to describe how we detect the effect of these sampling techniques of the 
respiratory tract on calf welfare. First experiments were conducted on three male Holstein-Friesian calves 
under thermal controlled experimental conditions. Following stressors were applied: deep nasopharyngeal 
swabbing (DNS), non-endoscopic bronchoalveolar lavage (nBAL), transtracheal wash (TTW), blood sampling 
and animal fixation. Each calf was wearing a sensor measuring heart rate (BPM, 3 Hz) and activity (x-, y-, z- 
accelerations; 26 Hz). A data-based mechanistic model adapts to each individual calve and next, the real-time 
model adapts to individual variations during possible stressful sampling techniques. The model decomposes 
the measured total heart rate into different components, namely heart rate components required for: the 
basal metabolism, the physical activity, and finally the mental component. The data-based mechanistic model 
for the dynamic response of the mental component during a sampling technique exhibits an R2 = (95 ± 4) % 
and Young Identification Criterion YIC = (-7.4 ± 3.4). The individual model parameters for each calf vary from 
b0 = 0.10 ± 0.03 bpm-1 to b0 = 11.9 ± 0.6 bpm-1, confirming individually different responses of each calf as 
expected. 
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Introduction 

Bovine respiratory disease (BRD) is an important disease showing welfare implications due to high morbidity, 
mortality, production loss (Pardon et al., 2012b; Lowie et al., 2021). Therapeutic- and diagnostic costs cause 
significant economic losses to the feedlot industry due to decreased production and increased costs 
associated with treatment, estimated at $42/case (Dubrovsky et al., 2020). The most frequently used 
sampling techniques employed for respiratory disease diagnostics are the deep nasopharyngeal swab (DNS), 
the non-endoscopic broncho-alveolar lavage (nBAL) and the transtracheal wash (TTW) (Van Driessche et al., 
2019). There are several studies evaluating the performance of these different techniques, showing, for 
instance that nBAL samples yielded more pure cultures compared to DNS ones, leading to a clinically 
interpretable culture result in 79.2% of the cases compared to only in 31.2% of the DNS samples (Van Driessche 
et al., 2017). Another study showed that the agreement among TTW, DNS and nBAL, was very good for 
identification of Pasteurella multocida, Mannheimia haemolytica, and Mycoplasma Bovis. These are bacteria 
that could be present in the lower airways of dairy calves with acute BRD (Doyle et al., 2017). However, there 
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is a lack of studies focusing on assessing animal welfare by measuring the stress induced in the calves by 
performing such techniques. 

Measuring stress in animals remains a difficult task (Chen et al., 2015). Animals try to cope with external 
stressors using behavioral and physiological stress responses and these can be measured via variables such 
as changes in form or frequency of behavioral patterns or changes in heart rate, body temperature and 
hormone levels in blood (Blokhuis et al., 1998). Many studies on stress and pain rely, solely or mainly, on 
plasma (Stilwell et al., 2008), saliva (Kovács et al., 2020) or hair (Heimbürge et al., 2019) cortisol assessment, 
but none of them lead to conclusive results. In this research, we aimed to monitor animal welfare in an 
objective way by measuring physiological variables, heart rate and activity data from the calves, and using 
them as inputs for the Mindstretch algorithm (Joosen et al., 2019) to estimate the heart rate mental 
component in real-time and relate its dynamics to the stress induced in the calves by each sampling 
technique. 

 

Materials and methods 

Study Design, Animals and Housing 

Ten male Holstein-Friesian calves, coming from the same dairy farm when aging thirty-four to forty-three 
days old, followed a two-week habituation period. They were individually housed in a research stable at 
Ghent University. The pens are straw bedded, and visual contact with other calves is possible. The calves had 
ad libitum access to hay, water and concentrates, being fed 3 L of commercially available milk replacer twice 
a day from individual drinking buckets. The calves’ health status was daily assessed visually, and rectal 
temperature was taken twice a day, during milk feeding. The trial protocol was approved by the Ethical 
committee of the Faculty of Veterinary Medicine and Bioengineering from Ghent University under license 
EC2020-087. 

Sensor system 

The Movesense active sensor system (Movesense Ltd, Finland, Vantaa) is attached to a shaved area at the 
left side of the thorax just behind the shoulder with the Movesense strap (Movesense Ltd, Finland, Vantaa). 
It collects heart rate, electrocardiogram (128 Hz), nine degrees of freedom inertial measurement unit (26 Hz) 
and temperature data. Besides, an in-house developed gateway, with a build-in camera module based on the 
ESP-32 CAM board placed above each pen, records a top view of each individual calf allowing posterior 
labelling of the calf behaviour and experimental procedures. 

Sampling techniques 

This work focuses on three sampling techniques: DNS, nBAL and TTW. To take a DNS, a researcher restraint 
the calf and inserts a nasal swab into the ventral meatus of the nasal cavity up to the level of the ventro- 
medial corner of the eye, rotating it a couple of times before removal. For the nBAL, the procedure was the 
same as the one described in Van Driessche et al. (2016). For the TTW sampling, the tracheal region at the 
level of the neck was shaved, rubbed (with hibitane solution 5%), scrubbed (with ispropanol 99%), and locally 
anesthetized with 3 mL procaine hydrochloride (4%) per subcutaneous injection with a 21G needle. The 
trachea was secured with one hand and with the other hand a central venous catheter (Centracath, Vygon, 
Ecouen, France) for human use was inserted through the skin into the tracheal lumen. The catheter was 
advanced until the wedge position was reached, and 30 mL of physiological 0.9% NaCl solution was injected 
and instantly aspirated. After aspiration, the catheter was removed, and the calf released. For blood sampling 
all the calves received a permanent intrajugular vein catheter before the experiment (MILA 
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international, Kentucky, Florence, US). Blood samples were collected at -1h, 0h, +1h, +5h and +24h relative to 
the respiratory tract sampling. 

As the duration needed to perform the sampling techniques are different, we decided to consider a sampling 
event as the combination of the sampling technique together with the subsequent blood sampling. 

Total heart rate decomposition 

By monitoring in a synchronized way, animal’s movement and heart rate, the dynamic responses of total 
heart rate and movement to stressor can be measured. Using these two variables as inputs, the Mindstretch 
algorithm (BioRICS n.v. Leuven, Belgium) decomposes the total heart rate into three different components: 
the basal, physical (Phys) and mental (Ment) components as described by Eq. (1): 

HRc}cgt = HR~lils + HRdTÄi + HRÅomp (1) 

Mindstretch is an adaptive real-time individualized model, as the model’s parameters are estimating through 
time solely with data from that specific animal. For a detailed description of this method, we refer to the 
dynamic analyses used for mental monitoring for humans (Berckmans et al., 2007) and animals (Norton et 
al., 2017). In this work, the days in which there is a suspicion of a calf undergoing an infection (rectal 
temperature > 39 oC) are not used to evolve the internal parameters of the Mindstretch algorithm. 

Modelling mental heart rate component 

The mental heart rate component is further modelled by using the CAPTAIN Toolbox (Taylot et al., 2017) in 
MATLAB 2016b software (Mathworks Inc., USA). Throughout the system model identification, SISO TF 
models with time-invariant parameters are tested. This model has the following general structure described 
in Eq. (2) (Young, 1984), 
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where y(t) and u(t) are the output (HRMent in bpm) and the input (binary input, 0 before the start of the 

sampling technique and 1 until the end) of the model, respectively; ξ(t) is additive noise assumed to be zero 
mean, serially uncorrelated sequence of random variables with variance σ*, accounting for measurement 
noise, modelling errors and effects of unmeasured inputs to the process; t is the measurement sample; is 

the input’s time delay, expressed in number of time intervals; A(zR&) and B(zR&) are two series given by Eq’s 

(3) and (4): 

A(zR&) = 1 + a&zR& + a*zR* + ⋯ + am zRm) (3) 

B(zR&) = b' + b&zR& + b*zR* + ⋯ + bm zRm* (4) 

where aÖ and bÖ are the model parameters to be estimated; zR& is the backward shift operator, i.e. zR&y(t) = 

y(t − 1), with y and t defined as in equation (1); na and nb are the orders of the A and B polynomials, 
respectively. The model parameters are estimated using a Refined Instrumental Variable (RIV) approach 
(Young, 1984). Normally, the model is referred to as the triad [na nb ], being na referred to as the model 
order. 

The goodness of the fit is quantified using the coefficient of determination, R* , which general expression is 
given by Eq. (5) (Young, 1984),  

R* = 1 − + 
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where σ* is the variance of the residuals, when comparing the model estimations with the output measured 

values, and σ* is the variance in the output. In addition, the Young Information criterion (YIC) is estimated. It 

is given by Eq. (6), 

YIC = logo » +… + logo »& ∑T , + , ""… (6) 
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where σ* is the variance of the residuals, σ* is the variance of the output, h is the number of estimated 
o Ä 

parameters, p 1 1  are the diagonal elements of the covariance matrix from the parameter’s estimations and a *  
is the square value of the i-th parameter. 

Model features 

When the preferred SISO TF model is a first order model (na = 1), the time constant (TC) and steady state gain 
(SSG) can be estimated as model features as (Young, 1984): 

TC = − äp 
sm (Rl() 

SSG = ∆Ä = h. 

(7) 
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If the preferred SISO TF model is of second order (na = 2), then the model is further studied to check whether 
this second order model allows a split in a serial, parallel or feedback first order models configuration as 
shown in Figure 1 (Boonen et al., 2000). 

 

Figure 1: Possible model split configurations of a second order model into a combination of first order models. 
These configurations are series (a), parallel (b) and feedback (c) configurations in which each equation shows the 
relation between the second order model (TF) with each first order model (TF1 and TF2), respectively. 

 

Results and discussion 

Heart rate components dynamics 

Applying the Mindstretch algorithm to the real-time heart rate and movement data collected for each calf, 
the total heart rate is split into the basal, physical and mental components. From Figure 2, it is clear that each 
sampling technique induces different dynamics in both physical and mental heart rate components. Similar 
dynamics are observed for TTW and nBAL techniques regarding the physical heart rate component, showing 
only some variability at the end of the test, meanwhile the DNS technique induces peaks in each step of the 
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test. Regarding the mental component, all three sampling techniques induce completely different dynamics, 
although the maximal variation for each sampling technique is reached at the end of the blodsampling. 

 

Figure 2: Examples from 3 different calves of the physical (HRPhys, upper graphs) and mental (HRMent, lower graphs) 
heart rate components evolution from right before starting the sampling technique until right after it, of the DNS 
(a), TTW (b) and nBAL (c) sampling techniques. The vertical black and red dashed lines indicate the start and end 
of the test and the blood sampling respectively. 

 

Modelling the dynamics of the heart rate mental component 

Four different calves per sampling technique, for which data are available to assess the mental heart rate 
components dynamics, were selected. Tables 1 to 4 summarize the results from the system identification 
modelling and Figure 3 show an example for each sampling technique modelling response. The modelling of 
the mental heart rate component dynamics induced by the DNS sampling techniques leads consistently to a 
first order SISO TF model, to a second order model, split in a feedback configuration of first order models for 
the TTW sampling technique and a miscellaneous of model structures for the nBAL sampling technique. 



Table 1: Features of the first order SISO TF models found as best to model the dynamic response of the heart rate 
mental component of a calf during the DNS sampling technique (DNS + blood sampling). 

Calf 1 Calf 2 Calf 3 Calf 4 
a1 -0.76 -0.87 -0.98 -0.83 
b0 0.6 0.87 0.16 0.37 
TC 18 37 247 153 

SSG 2.5 6.7 8.0 2.2 
R* 94 97 99 85 c 

-2.5 -9.6 -13.2 -6.4 YIC 
 

Table 2: Features of the second order SISO TF models found as best to model the dynamic response of the heart 
rate mental component of a calf during the DNS sampling technique (TTW + blood sampling) 

Calf 1 Calf 2 Calf 3 Calf 4 
a1 -1.68 -1.85 -1.97 -1.96 
b0 0.77 0.85 0.98 0.96 
a2 0.34 1.58 0.28 0.01 
b1 0.19 -1.58 -0.28 -0.01 
R* 97 96 95 99 c 

-3.3 -6.8 -6.5 -10.6 YIC 
 

Figure 3: Example of the dynamic response of the heart rate mental component (HRMent, blue solid line) in beats 
per minute (bpm) and SISO TF models (red solid line) for the DNS test from Calf 2 (a), the for the TTW test from 
Calf 4 (b) and the nBAL test from Calf 1 right before, during and right after the combination of sampling technique 
and blood sampling. The vertical black and red dashed lines indicate the start and end of the test and the blood 
sampling respectively. 
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Besides, the modelling results match the sampling techniques descriptions. The DNS is the simplest in terms 
of procedure and it also exhibits the simplest model structure. TTW and nBAL consist of two steps, but 
meanwhile for TTW happens simultaneously and the sampling technique can be modelled by a second order 
model, the nBAL steps are more independent leading to the need of using different individual SISO TF models 
to characterize the impact in the heart rate mental component dynamics. Also, the parameter values vary 
for each calf and for different tests, which is expected. Since each calf is a complex, dynamic, time variant 
and dynamic CITD entity (Berckmans, 2006), the physiological state of each calf is individually different, as 
the response to the sampling technique. This is pointed out in the differences in parameters and metrics, 
such as the TC and the SSG, values in the model for each calf. 

 

Table 3: Model parameters (a11, a21 unitless and b10, b20, in bpm·s2·m-1 for TF1 and TF2, respectively) and features, 

such as the time constant (TC1,2, in s) and the steady state gain (SSG1,2, in bpm·s2·m-1) for the two different first 
order SISO TF model (TF1 and TF2). 

Calf 1 Calf 2 Calf 3 Calf 4 
a11 -0.93 -0.86 -0.97 -0.98 
a21 -0.96 -0.99 -0.98 -0.93 
b10 0.17 1.54 0.28 0.01 
b20 11.93 0.04 0.04 0.20 
TC1 5 32 379 389 
TC2 39 1593 382 149 

SSG1 0.46 1.80 0.29 0.01 
SSG2 5.27 0.04 0.03 0.98 

 

Table 4: Summary of the different SISO TF models needed to characterize the dynamic response of the heart rate 
mental component of the calf to the nBAL sampling technique. 

Calf 1 Calf 2 Calf 3 Calf 4 
Model 1 2nd order - Feedback 1st order 1st order 1st order 
Model 2 2nd order - Feedback 1st order 2nd order - Serial 2nd order - Feedback 
Model 3 2nd order - Feedback  2nd order - Parallel  

 

Conclusions 

By modelling the dynamics of the heart rate components during different sampling techniques, it is possible 
to evaluate the mental impact of the sampling technique. These results show that the DNS sampling 
technique induces the simpler response in the heart rate mental component dynamics. It can be described 

by a first order SISO TF model, R* = (94 ± 5)% and YIC = (−8 ± 3) . The TTW shows an increased 
complexity in the dynamics induced in the heart rate mental component, but it is still possible to use a single 

SISO TF second order model, R* = (97 ± 2)% and YIC = (−7 ± 3). From this we hypothesize the TTW test 
has a higher mental impact on the calf than the DNS and blood sampling. Finally, the BAL exhibits the more 
erratic impact in the heart rate mental component dynamics. This research will be extended to a larger 
number of calves to verify these preliminary results from a limited sample. 
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