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Abstract 

Automated animal activity recognition (AAR) has succeeded dramatically due to recent sensing technologies 
and deep learning advances, enhancing animal health and welfare. Since animals need to be monitored over 
a long period, factors influencing the energy consumption of sensing devices must be considered carefully. 
As a critical factor, the sampling rate greatly affects energy usage, battery life, and data storage. To reduce 
energy costs, existing works often lower sampling rates. However, when the sampling rate falls below a 
limited threshold, the recognition performance would degrade rapidly due to missing many relevant signals. 
Therefore, this study proposed a novel correlation distillation-based information recovery (CDIR) method to 
improve the performance of AAR at low sampling rates. Specifically, we took two convolutional neural 
networks trained using data having higher and lower sampling rates as the teacher and student models, 
respectively. The CDIR enabled the student to mimic correlations within teacher features, facilitating missing 
information recovery. To evaluate its effectiveness, we conducted experiments on a public dataset acquired 
from six horses using tri-axial accelerometers and gyroscopes with 100 Hz. Data having low sampling rates 
were obtained by down-sampling the original data at different frequencies (e.g., 50, and 25 Hz). The 
experimental results demonstrated that our CDIR remarkably boosted the model trained on low sampling 
rate data (e.g., percentage-point increments in the precision, recall, F1-score, and accuracy of 2.98%, 3.22%, 
3.05%, and 1.89%, respectively, for the 12.5-Hz data) while outperforming the existing KD algorithms. This 
inspired the development of energy-efficient animal monitoring systems. 
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Introduction 

Advancements in sensing technologies and smart computing techniques are driving the rapid development 
of automated and precision livestock management (Kleanthous et al., 2022). Automated animal activity 
recognition (AAR) is one sector that benefits considerably from using such technologies. Particularly, 
wearable sensors have been widely used as part of an animal activity monitoring system and in conjunction 
with deep learning to infer the daily behaviors of individual animals (Smith et al., 2015). Monitoring these 
activities in real-time could allow early identification of time-sensitive health issues and promote timely 
human interventions when necessary, effectively improving animal health and welfare (Eerdekens et al., 2021; 
Mao et al., 2022a, 2022b). 

In practical automated AAR systems using wearable devices, as the monitoring of animals needs to be carried 
out over a long period (e.g., a few weeks up to several months), factors influencing the energy consumption 
of sensing devices must be considered carefully. As one of the most critical factors, the sampling rate largely 
affects power usage, battery life, and data storage (Eerdekens et al., 2021; Walton et al., 2018). Walton et al. 
(2018) stated that increasing the sampling frequency from 16 to 32 Hz reduced the battery life by up to half 
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(1.81 years vs 3.08 years). Considering practical benefits, existing works often lower sampling rates to reduce 
energy costs (Riaboff et al., 2022; Walton et al., 2018). Nevertheless, when the sampling rate falls below a 
limited threshold, the AAR performance would degrade rapidly due to missing many relevant signals. Hence, 
finding a good way to recover these missing details is necessary for an AAR system. 

Knowledge distillation (KD), pioneered by Hinton et al. (2015), transfers the knowledge from a cumbersome 
teacher model to a small one that is more suitable for deployment, so that the small model’s performance 
can be significantly boosted compared to training the small model alone (Hinton et al., 2015). Particularly, KD 
has been verified to make it possible to improve the performance of any machine learning algorithms while 
minimizing deployment and computational resources (Lin et al., 2022). Inspired by the knowledge transfer 
mechanism in KD, we explored the possibility of transferring knowledge obtained from high sampling rate 
data to the model trained on low sampling rate data, aiming to alleviate the information loss resulting from 
the low sampling rate. 

In this study, we proposed a novel method, dubbed correlation distillation-based information recovery 
(CDIR), to improve the performance of AAR at low sampling rates. Specifically, we took data having higher 
and lower sampling rates as the teacher and student data, and corresponding trained models as the teacher 
and student models, respectively. The CDIR could guide the student to mimic correlation within teacher 
features, further recovering the missing information in student features. To evaluate the effectiveness of our 
method, we conducted experiments based on a public dataset, which was acquired from six horses 
(Kamminga et al., 2019) using tri-axial accelerometers and tri-axial gyroscopes with an initial sampling rate of 
100 Hz. 

 

Materials and methods 

Experimental data 

The used data was a public dataset created by Kamminga et al. (2019), and it comprised 87,621 2-s labelled 
samples acquired from six individual horses with neck-attached inertia measurement units. The sampling rate 
was set at 100 Hz for both the tri-axial accelerometer and tri-axial gyroscope and 12 Hz for the tri-axial 
magnetometer. Amongst, six activities were included, i.e., eating, galloping, standing, trotting, walking- 
natural, and walking-rider, and the sample numbers were 16,048, 3,939, 5,113, 25,076, 3,327, and 34,118, 
respectively. Herein, the tri-axial motion data from the accelerometer and gyroscope were utilized, forming 
a tensor of 1 × 6 × 200 for each instance. Before being fed into the network, all samples need to be 
normalized, as Mao et al. (2021). 

Correlation distillation-based information recovery 

The proposed correlation distillation-based information recovery (CDIR) method could transfer the 
knowledge contained in the teacher model to the student model, consequently facilitating the student’s 
missing information recovery. Figure 1 illustrates the overall architecture of the proposed CDIR. Given a 
teacher instance and a student instance with the same classification label, we first upsampled the student 
input through the nearest neighbor interpolation (Thévenaz et al., 2000) to keep its shape equal to that of 
teacher input. Then, the teacher input and upsampled input were separately fed into the teacher model T 
and student model S to yield the multi-layer teacher feature maps ØFc‘

t  
and student feature maps ØFu‘

t  
. 

s  s@& s s@& 

These feature maps were then fed into the correlation distillation (CD) module at the corresponding layer to 
calculate loss ℒvw, which could transfer the time- and axis-aware correlations within feature maps from 

teacher to student. In addition, the output logit was also obtained from the student model and used to 
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compute the classification loss ℒvx combined with the original class label, thereby supervising the student 
model training. Finally, the overall student network was trained by a joint loss function: 

ℒpjpls = ℒvx + λ ∗ ℒvw, (1) 

where ℒvx denoted the cross-entropy loss and λ was the weight factor. Note that the teacher model T was 
pre-trained using the teacher data in a pure classification way and would be kept fixed during the student 
model training. The enhanced student classification network can then be directly used in the inference phase 
in practical scenarios with low sampling rates. 

 

Figure 1: Overall architecture of our correlation distillation-based information recovery. 
 

Correlation distillation module 

Existing literatures have proved that animal behavior movement patterns often show intrinsic periodicity 
within a particular duration, implying that signals between different temporal positions have particular 
correlations (Casella et al., 2020; Chakravarty et al., 2019). Meanwhile, specific dependencies also exist in the 
signals from individual sensing axes (Chen et al., 2018). However, these correlations tend to become weak or 
even disappear under low sampling rates as some vital information is missing. Hence, we devised a CD 
module (Figure 1) to enable the student to mimic the time- and axis-aware correlations within teacher feature 
maps, further facilitating the recovery of the student’s missing information. 

As shown in Figure 1, let Fc ∈ Rn×l×p and Fu ∈ Rn×l×p represent the feature maps of teacher and student on 
s s 

the same layer l, respectively. Here, c denoted the feature map's channel number, and a and t implicitly 
referred to the dimensions related to the axis and time, respectively. Specifically, both Fc and Fu were taken 

s s 

as inputs to two branches of the CD module, i.e., the time-aware correlation distillation (TCD) branch and the 
axis-aware correlation distillation (ACD) branch. In the TCD branch, we first reshaped Fc and Fu into two 2D 

s s 

feature maps with a size of t ∗ ac, where each vector with length ac was regarded as the feature along the 
time dimension. Then, we conducted matrix multiplication on each 2D feature map and its corresponding 
transposition, generating an inter-time correlation matrix M¥ c and M¥ u for the teacher and student, 

s s 

respectively: 
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M¥ c = Rµes(Fc ) ⋅ Rµes(Fc)y , (2) 
s s s 

M¥ u = Rµes(F u ) ⋅ Rµes(Fu)y , (3) 
s s s 

where Rµe s  and (∙)y represented the reshaping and transposing operations mentioned above, respectively. 
Afterwards, we performed the L2 normalization of these two matrices over the horizontal dimension. To 
recover the student’s missing information, we encouraged the student to mimic similar time-aware 
correlations to the teacher by penalizing the negative cosine similarity between the normalized vectors 
within the teacher’s and student’s correlation matrices: 

 
ℒË

s = −cos_sim(norm>M¥ c?, norm>M¥ u?)/t, (4) 
s s 

where ℒËs denoted the loss function of the TCD branch, norm(∙) denoted the L2 normalization, and cos_sim(∙ 

,∙) denoted the cosine similarity function. 

Meanwhile, similar operations were conducted in the ACD branch to transfer the axis-aware correlations 

within feature maps from the teacher to the student (Figure 1). Briefly, Fc and Fu were first reshaped into 
s s 

two 2D feature maps with a size of a ∗ tc, which were used to generate two inter-axis correlation matrices 
M‹ c and M‹ u by carrying out the matrix multiplication. Then, these two inter-axis correlation matrices were 

s s 

normalized using the L2 normalization over the horizontal dimension, and further used to construct the 
negative cosine similarity loss. The details are formulated as follows: 

 
M‹ c = R›e s ( F c )  ⋅ R›es(F c )y ,  (5) 

s s s 

M‹ u = R›e s ( F u )  ⋅ R›es(F u )y ,  (6) 
s s s 

ℒª
s = −cos_sim(norm>M‹ c?, norm>M‹ u?)/a, (7) 

s s 

where R›e s  and ℒª
s represented the reshaping operation and loss function in the ACD branch. Finally, the total 

loss ℒvwz{,s of the CD module in the l-th layer can be formulated as the loss combination of TCD branch and 
ACD branch: 

 

ℒvw,s = β& ∗ ℒË
s + β* ∗ ℒª

s, (8) 

where β& and β* were the weight factors and both set to 1/2 in default. 

Considering that the time- and axis-aware correlations are included in intermediate features across various 

neural network layers, we applied the CD module to all layers. Suppose a total of L pairwise (teacher-student) 
feature maps from the model, the final loss function ℒvw can be defined as the average value of losses across 
L layers: 

 

1 
t 

ℒvw = 
L 

æ ℒvw,s. (9) 
s@& 

With the help of loss ℒvw, the CD module could compel the student to imitate the inter-time and inter-axis 
correlations within the teacher feature map across hierarchical layers. Obviously, these correlations heavily 
rely on ample information within features. Therefore, minimizing the loss ℒvw in Equation 9 can facilitate the 
recovery of the student’s missing information. 



420  

Implementation 

This study employed the cross-modality interaction network (CMI-Net), which has been previously validated 
in improving horse activity recognition performance (Mao et al., 2021), as the classification network 
architecture of the teacher model and student model. Four common evaluation metrics were measured to 
indicate the comprehensive classification performance, i.e., precision, recall, F1-score, and accuracy. The 
performances of CMI-Net trained at different sampling rates were used as the baseline values. Herein, we 
down-sampled the original data sampled at 100 Hz to sampling rates of 50, 25, 12.5, 10, 5, and 2 Hz. Amongst, 
the sampling rate at which CMI-Net performed best was selected as the sampling rate of the teacher data, 
and the corresponding trained model served as the teacher model. The student model was then trained using 
the data having a lower sampling rate than the teacher sampling rate while being guided by the knowledge 
obtained from the trained teacher model. 

During training, we adopted the same configurations as Mao et al. (2021), and we used the grid search 
method to set exact values for λ in Equation 1. The best model with the highest validation accuracy was saved 
and further verified using test data. To evaluate the effectiveness of our method in improving the student 
model’s performance, we compared it against the baseline method (i.e., training the student model alone) 
and various existing KD methods (i.e., basic KD (Hinton et al., 2015), AT (Zagoruyko and Komodakis, 2017), 
ICKD (Liu et al., 2021)). All experiments were executed using the PyTorch framework on a single NVIDIA 
GeForce RTX 3090 GPU. 

 

Results and discussion 

Overall, the baseline model (CMI-Net) arrived at the best performance when using data having a sampling 
rate of 25 Hz. Comparison experiments demonstrated that our proposed CDIR remarkably boosted the 
model trained on data having low sampling rates while exhibiting superior performance to the existing KD 
methods. 

Baseline performance 

Figure 2 illustrates the performance of the baseline model under different sampling rates, including 100, 50, 
25, 12.5, 10, 5, and 2 Hz. We can observe that as the sampling rate gradually dropped from 100 Hz, the 
performance increased slightly until it peaked at 25 Hz; that is, a precision, recall, and F1-score of 82.92%, 
85.12%, and 83.50%, respectively. This result was consistent with the results of several previous studies on 
horse behaviour recognition using wearable sensors (Eerdekens et al., 2020a, 2020b, 2021), which found that 
reducing the sampling rate within a certain range led to higher performance. This phenomenon might be 
explained by the fact that too high sampling rates raised irrelevant noise in the data, thereby misleading the 
final behaviour classification. Subsequently, the performance, as expected, started to degrade constantly as 
the sampling rate continued to drop, which was because that less information was included in data having a 
low sampling rate. According to the selection criteria described in the implementation details, we chose 25 
Hz as the teacher sampling rate. 
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Figure 2: Classification performance of baseline method for data at different sampling rates (i.e., 100, 50, 25, 12.5, 
10, 5, and 2 Hz). 

 

Comparisons with existing methods 

Table 1 presents the experimental results when using the data with a sampling rate of 12.5 Hz (λ=1.1) and 5 
Hz (λ=1) as the student input. For comparison, we also report the performance of the teacher model that 
was trained on data obtained at a sampling rate of 25 Hz. The results revealed that all KD approaches 
outperformed the baseline method in terms of all evaluation metrics, which demonstrated the promising 
capabilities of the knowledge transfer mechanism in alleviating the performance degradation resulting from 
the use of data obtained at low sampling rates. Our proposed method exhibited superior performance to 
existing KD methods with a precision, recall, F1-score, and accuracy of 83.51%, 84.70%, 83.93%, and 91.20%, 
respectively, for the 12.5-Hz data and 76.77%, 76.36%, 76.45%, and 87.05%, respectively, for the 5-Hz data. This 
can be ascribed to the ability of our architecture to effectively recover the student’s missing information by 
sufficiently exploiting the teacher’s knowledge. Moreover, it was also worth noting that our method even 
exceeded the teacher model performance with relative percentage-point gains of 0.59%, 0.43%, and 1.13% in 
precision, F1-score, and accuracy, respectively, for the 12.5-Hz data. This finding was consistent with several 
previous works (Park et al., 2019; Romero and Kahou, 2015). This was also greatly in line with practical 
requirements that aimed to relieve the burden of energy costs while maintaining desirable performance. 

 

Table 1: Comparison of our method against the baseline method and existing knowledge distillation methods with 
low sampling rates. 

Methods# 
12.5 Hz 5 Hz 

Prec (%) Rec (%) F1 (%) Acc (%) Prec (%) Rec (%) F1 (%) Acc (%) 

Teacher 82.92 85.12 83.50 90.07 82.92 85.12 83.50 90.07 

Baseline 80.18 81.12 80.48 89.01 74.53 74.94 74.67 85.44 

KD (Hinton et al., 2015) 81.54 82.12 81.68 89.99 76.01 75.05 75.25 87.20 

AT (Zagoruyko et al., 
2017) 

82.45 82.83 82.61 91.17 75.07 75.76 75.17 86.47 

ICKD (Liu et al., 2021) 81.36 82.43 81.77 90.15 75.15 74.59 74.39 86.02 

Our CDIR 83.16 84.34 83.53 90.90 76.45 74.99 75.57 86.45 

# Prec: precision; Rec: recall; F1: F1-score; Acc: accuracy. The best result on student datasets for each metric 
is highlighted in bold. 
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Conclusions 

This study proposed a novel method called CDIR to improve the performance of AAR at low sampling rates. 
The CDIR enabled the student to mimic the time- and axis-aware correlations within teacher feature maps, 
further facilitating the recovery of the student’s missing information. The experimental results revealed that 
our approach remarkably boosted the performance of a model trained on data obtained at low sampling 
rates while outperforming existing KD algorithms. This provided considerable inspiration for the practical 
application of AAR, especially in scenarios with limited energy sources. 
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