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Abstract 

Energy consumption of livestock production is one of the main concerns in breeding industry and in global 
greenhouse gas emissions. This study designed a new dehumidification system that took full advantages of 
the characteristics of natural low temperature in cold winter with low indoor heat loss. This paper established 
models to predict the performance of this dehumidification system based on the deep learning method. The 
results showed that deep learning models had the best prediction under the hyperparametric combination 
when hidden layers number was 10, neurons number was 200, loss function was MAPE and optimizer was 
Adam. The predicted values of LSTM and GRU were consistent with the real values, and R², RMSE and MAPE 
of GRU model were 0.9152, 3.07% and 2.38%, respectively. This method can accurately predict the 
performance of dehumidification system, which can provide optimal working condition of dehumidification 
system. 

Keywords: Livestock house, cold region, dehumidification system, condensation dehumidification, deep 
learning algorithm 

 

Introduction 

Energy consumption of livestock production is one of the main concerns in breeding industry and in global 
greenhouse gas emissions (Shin, et al., 2022, Xie, et al., 2019, Kwak, et al., 2021). There is a long-term 
contradiction between ventilation and energy consumption in livestock and poultry production in cold winter 
(Barber, et al., 1989, Harmon, et al., 2010, Islam, et al., 2016). In order to keep an appropriate temperature for 
animals in winter in enclosed livestock buildings, the environment control strategies of less or non-ventilation 
in northeast of China are always used to keep warm due to the high cost, this high-humid living environment 
may increase the opportunity of microorganisms’ growth, and the possibility of animal respiratory diseases 
(Hermann, et al., 2007, La, et al., 2021). Although ventilation could decrease the humidity and exchange the 
fresh air (Xie, et al., 2022), the indoor temperature (T) will be decreased rapidly at the same time (Spengler, et 
al., 1983). It was reported that the heat lost by livestock buildings through ventilation during winter 
accounted for 70–90%. 

Dehumidifier of condensation dehumidification, is attracting increasing attention to obtain dry air to reduce 
the humidity (Ding, et al., 2022, Zhang, et al., 2019). When the relative hot air with high-humid pass through 
the cold medium of dehumidifier, the air temperature will be reduced lower than dew-point temperature 
under a certain relative humidity (RH), and it leads to some water vapor be separated out (D’Arce, et al., 
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1970). This method avoids room air exhaust to the outside directly and maximizes the heat retention through 
the air internal circulation. 

In the northeast of China, the average outdoor temperature in January was about -19 oC, and the relative 
humidity is about 72%, which is benefit to condensation dehumidification to save energy because of big 
temperature difference in the winter. The energy-efficient dehumidification system (DS) designed for 
livestock houses in cold region (Krommweh, et al., 2014) can be calculated with detailed heat and mass 
transfer equations (Xie et al., 2019, Han, 2018). Many models about moisture or heat balance for estimating 
the dehumidification requirement in greenhouse(Rahman, et al., 2021, Costantino, et al., 2021) and livestock 
house (Xie, et al., 2017) are reported recently. Some mature software tools (such as EnergyPlus (Ding et al., 
2022, Crawley, et al., 2001)) are commercially available to set up physics-based model. 

However, the performance of DS in this study has relationship with many factors, which could not establish 
models by common physical-based model. Now deep learning modeling method is widely used in agricultural 
environment prediction. The data-driven method overcomes the drawbacks of the physical model by 
learning directly from the experimental data to make the prediction. The most straightforward deep model 
is multilayer perceptron (MLP). MLP adds multiple hidden layers to an ordinary neural network to enhance 
its capability to learn more complicated patterns. Contrarily, recurrent neural network (RNN), the long-short 
term memory (LSTM) and gated recurrent unit (GRU) are special forms of the deep neural network, specially 
designed to deal with time-series data (Sun, et al., 2020). For example, LSTM was used to predict of heating 
energy consumption with operation pattern variables for non-residential buildings (Jang, et al., 2022). Kim 
and Cho (Kim, et al., 2019) developed a model for predicting the energy consumption of a residential building 
through the combination of LSTM and Convolutional Neural Network (CNN) to accurately predict energy 
consumption for stable power supply. And Wang et al. found the suitability of machine learning could 
minimize uncertainty in the measurement and verification of energy savings (Wang, et al., 2022). 

The objective of this study was developed deep learning models to preciously predict internal circulation 
dehumidification system, and can provide optimal working condition for dehumidification system. 

 

Materials and methods 

Evaluating indicator of DS 

The performance of the DS was evaluated using indoor T drop, dehumidification rate (DR) and coefficient of 
performance (COP) as performance indicators. COP is calculated by Eq. (1): 

 

COP = 
Hdeh 

H fan + Hpump 

 
(1) 

where Hdef is cooling capability of dehumidification, W; Hfan and Hpump are the overall electric energy 
consumption of fans and pumps, respectively.(Yin, et al., 2008). 

Sequential deep learning algorithms 

Belonging to one of the important neural networks, MLP is able to acquire the non-linear mapping 
relationship between input and output data using non-linear activation functions. However, MLP fails to 
model sequential data for lack of the memory function. RNN with chain-like loops allows information to be 
transferred from one step of the network to the next. The output of every unit in RNN associates not only 
with the current input but also with the recursive information of previous unit. 
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Therefore, the loop structure assists RNN in handling time-series forecasting problems. RNN is unable to 
learn to connect the information with long-term dependencies due to its vanishing gradient problem. 

LSTM was typically designed for handling long sequential data. It improves the information flow by the LSTM 
block including three additional gates: an update gate (Eq. (3)), a forget gate (Eq. (4)), and an output gate 
(Eq. (5)); as well as two more cells: a candidate memory cell (Eq. (2)) and a memory cell (Eq. (6)). So, LSTM 
gets new at  (Eqs. (7) ) and yt (Eqs. (8)) through this LSTM block (S., et al., 1997). 

ct = tanh(W [at−1 , xt ] + b ) 

 =  (W [at−1, xt ] + b ) 

  =  (W [at−1 , xt ] + b ) 

 

 =  (W [at−1 , xt ] + b ) 

ct  =  * ct  +   * ct −1 

 

at =  *tanh(ct ) 

yt = g '(W at + b ) 

 

(2) 

 
(3) 

 

(4) 
 

(5) 
 

(6) 
 

(7) 
 

(8) 

where tanh(x) is hyperbolic tangent function, as defined in Eq. (9); σ (x) is sigmoid function, as defined in Eq. 
(10); c<t>is the memory candidate at time step t; c <t>is the memory value at time step t; Γu is the update gate; 
Γf is the forget gate; Γo is the output gate; Wc, Wu, Wf , and Wo are weight matrices to calculate the memory 
candidate, update gate, forget gate, output gate, respectively; bc, bu, bf, and bo are bias vectors to calculate 
the memory candidate, update gate, forget gate, output gate, respectively. 
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(10) 

LSTM separates the memory cell from the output cell, and purposely adds a forget gate to calculate the 
update rate to determine how much memory needs to be passed to the next time step, adding flexibility to 
determine what and how much information should be passed to the next time step. The LSTM can determine 
whether features should be retained or forgotten when executing the learning task. As a result, the LSTM 
has the capability to carry out tasks over long time series and discover long-range features. 

Compared with the LSTMs, GRUs have a more concise architecture by combining the input gate and forget 
gate into a single update gate. 

Comparison metrics 

In this study, we selected coefficient of determination (R2), root mean square error (RMSE), mean absolute 
percentage error (MAPE) to validate the prediction performance according to deep learning model 
application. 
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Experiments 
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A series of comparative experiments was carried out in the laboratory of Northeast Agricultural University, 
Harbin, China from December, 2021 to February, 2022 (Figure 1). The average outdoor T in January was about 
-19 oC. An enclosed chamber 5.8 m × 3.0 m × 2.4 m (L × W × H) was placed outdoor. The dimension of indoor 
and outdoor fin-tube heat exchanger was 0.53 m × 0.18 m × 0.53 m (L × W × H). The heat exchange area and 
cross-sectional area of heat exchanger was about 18 m2 and 0.25 m2, respectively. The diameter of variable 
rate fan fixed on heat exchanger was 0.4 m. Rated power of the fan and refrigerant pump were 190 W and 
46 W, respectively. 70-L refrigerant is stored in an insulation tank in the chamber. 

Wet-bulb and dry-bulb temperature sensors and anemometers were located on inlet and outlet of the heat 
exchanger, and temperature and humidity sensors and static pressure sensors were installed to monitor the 
ambient situation change (Table 1). Temperature different (TD) between room air and refrigerant, air flow 
rate (AFR), refrigerant flow rate (RFR) and heat power of heater were key control parameters in this 
experiment (Table 2). Most of these monitoring data are continuous. Interpolation method is applied to 
handle missing data. Control system collected data of indoor and outdoor T and RH and controlled the 
operation on fans and refrigerant pumps. 

 

Table 1: Characteristics of measurement devices.  

Device Type Range Accuracy 
Dry-bulb temperature RTD sensor -50 to 150 oC ±(0.15+0.002t) oC 
Wet-bulb temperature RTD sensor -60 to 260 oC ±(0.15+0.002t) oC 

Wind speed Differential pressure 0-3 m s-1 0.2 m s-1 
 sensor   

Static pressure Differential pressure 0-1000 Pa ±0.3% 
 

Temperature 
sensor 

Thermocouple 
 

-80 to 150 oC 
 

±(0.15+0.002t) oC 
RH Thermocouple 0-100% ±1% 

Density meter Glass hydrometer 1.0-1.5 g ml-1 0.001 g ml-1 

  ( y − yˆ )  
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Figure1: Schematic figure of energy-saving DS: 1-humidifier, 2-anemometer, 3-indoor fan, 4-indoor heat 
exchanger, 5-pump, 6-pipes, 7-refrigerant tank, 8-temperature and humid sensors, 9-outdoor exchanger 

 

Table 2: Experimental scheme design. 
 

No  
Outdoor T, 

oC 
Initial indoor T, 

oC 
Initial refrigerant T, 

oC AFR, m s-1 
RFR,

 
L min-1 

Heater power, 
kw hr-1 

DR, 
kg hr-1 

 

1 -22~-7.9 15/20 -5/-10/-15 0.6/0.9/1.5 3/5/7 5.537 3.05 

2 -24~-7.0 20 -5/-10/-15/-20 0.6/0.9/1.5 3/5/7 4.400 3.05 
 

Results and discussion 

Statistics and correlation analysis 

Based on monitoring and deduction data of experiment (Table 3), correlations coefficients of the influencing 
factors of dehumidification system (outdoor temperature, initial TD of indoor and refrigerant, AFR and RFR) 
and dehumidification performance factors (indoor RH, indoor temperature, refrigerant temperature rise, 
cooling capability of dehumidifier, dehumidification rate and COP) are determined by Spearman correlation 
analysis method. The resulting correlations are visualized with the heatmap, as shown in Figure 2. 

  Table 3: Variable of experimental performance data.  

 
 
 
 
 

 
 error  

Indoor 
Data temperature 

drop\oC 

Refrigerant 
temperature 
rise\oC 

Cooling 
capability\kw 

Dehumidification 
\kg/hr 

 

COP 

Min value 0.2 3.9 10.53 2.84 2.39 

Max value 9.4 19.3 30.77 4.79 5.71 

Average±std 
5.03±2.06

 10.52±3.68 20.77±4.88 4.39±0.28 3.91±0.87 

 



 
Figure 2: Spearman’s rank correlations. 

 

It can be seen that standard deviations of dehumidification rate and COP are small from Table 3, indicating 
that their fluctuations are very small and the influence factors have slight effect on these two performances. 
And this also can be proven by Figure 2. Most influence factors have no irrelevant to dehumidification rate 
except AFR. The main reason is that the temperature of heat exchange is lower than the dew point 
temperature of room air and condensation happened at the same rate during dehumidification. AFR has a 
weak positive correlation with Dehumidification (0.099). This means the higher of AFR could gain more 
condensate water from heat exchanger. However, the rate of dehumidification increases slightly. Because 
the ability of heat transfer of heat exchange has a limit in these experimental situations, and the temperature 
difference of indoor and outdoor. Correlation analysis showed that indoor T, RH, refrigerant temperature, 
temperature before and after heat exchanger, outdoor T and RFR were selected as independent variables 
to model humidification system performance. 

Hyper-parametric selection 

In order to obtain the optimal prediction model, it was necessary to determine the number of hidden layers, 
the number of neurons in each layer, loss functions and optimizers in the model. The sets of hyper- 
parameters were listed in Table 4. 

 

Table 4: Model parameter set.  

Hidden layers Neurons Loss function optimizer 
 

Value 1/3/5/10 60/100/200/400  MSE/MAE/MAPE  SGD/AdaGrad/RMSprop 
 /Adam/Nadam  

To study the influence of hidden layers number on prediction, the other parameters were kept constantly, 
and hidden layers number was adjusted in the range of {1,3,5,10} in Table 4. The prediction results were 
shown in Table 5a. When hidden layers was 10, the mean value was a little better than others. RMSE、R2 and 

MAPE were 0.03654、0.8744 and 0.0296, respectively. 



The same method was used to select the parameters of neurons number (Table 5b), loss function (Table 5c) 
and optimizers. Finally, the optimal set of parameters was {10, 200, MAPE, Adam}. And the prediction of 
LSTM and GRU had advantage to MLP and RNN. 

 

Table 5a: Influence of hidden layers number on prediction. 
 

 

Mod 
1 hidden layer 

el RMSE R2 
MAP

 
E 

3 hi 

RMSE 

dden lay 

R2 

ers 
MAP 

E 

5 hi 

RMSE 

dden lay 

R2 

ers 
MAP 

E 

10 h 
RMS 

E 

idden la 

R2 

yers 
MAP 

E 

MLP 
0.042 0.837 0.031 0.044 0.819 0.032 0.043 0.827 0.032 0.047 0.799 0.038 

5 9 0 9 0 5 9 2 8 2 5 8 

RNN 
0.039 0.857 0.026 0.039 0.857 0.026 0.045 0.816 0.029 0.038 0.868 0.031 

9 3 2 9 3 1 2 6 0 3 3 5 
LST 0.038 0.864 0.024 0.024 0.948 0.021 0.029 0.922 0.022 0.025 0.939 0.022 
M 9 1 5 0 1 5 4 6 9 9 7 5 

GRU 
0.041 0.845 0.024 0.033 0.898 0.024 0.028 0.925 0.023 0.029 0.923 0.025 

5 2 6 5 9 0 8 7 0 2 5 8 
Mea 0.041 0.843 0.028 0.037 0.871 0.026 0.037 0.867 0.027 0.036 0.874 0.029 

n 7 3 0 0 7 1 7 8 5 5 4 6 

 

Table 5b: Influence of neurons number on prediction. 
 

Mod 
60 neurons 100 neurons 200 neurons 400 neurons 

el 
RMS 

E 
R2 

MAP 
E 

RMSE R2 
MAP 

E 
RMS 

E 
R2 

MAP 
E 

RMSE R2 
MAP 

E 
 

M 

RNN 
0.038 

 

0.868 

 

0.027 

 

0.045 

 

0.816 

 

0.029 

 

0.038 

 

0.865 

LST 
M 

0.028 
4 

0.927 
5 

0.025 
2 

0.029 
4 

0.922 
6 

0.022 
9 

0.025 
4 

0.942 
2 

 

GRU 
0.025 

7 

0.940 
7 

0.023 
3 

0.028 
8 

0.925 
7 

0.023 
0 

0.027 
2 

0.933 
3 

0.026 
0.0317 

0.909 0.028 

3 6 8 
Mea 0.036 0.874 0.027 0.037 0.867 0.027 0.035 0.884 0.027 0.036 0.876 0.027 

n 3 9 2 7 8 5 1 7 6 5 2 5 
 

Table 5c: Influence of loss function on prediction.  

MAE MAPE MSE 
Model RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE 

MLP 0.0433 0.8316 0.0279 0.0238 0.8775 0.0282 0.0397 0.8584 0.0272 

RNN 0.0467 0.8037 0.0286 0.0243 0.8243 0.0292 0.0387 0.8656 0.0301 
LSTM 0.0268 0.9355 0.0196 0.0256 0.9361 0.0254 0.0254 0.9422 0.0236 
GRU 0.0253 0.9423 0.0191 0.0266 0.9356 0.0233 0.0272 0.9333 0.0263 

 Mean 0.0355 0.8783 0.0238 0.0251 0.8934  0.0263  0.0328  0.9000  0.0268  

Model comparison 

Trough above parameter selection, R², RMSE and MAPE of GRU model were 0.9152, 3.07% and 2.38%, 
respectively. The prediction of GRU was the best in this method. DR of the internal circulation DS was 

LP 
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predicted by using hyper-parametric selection, as shown in Figure 3. 

It also can be seen that at the initial stage, DR can reach more than 3.5 kg/h due to the maximum temperature 
difference (TD) between the refrigerant and indoor T. And then it dropped rapidly. In 10-12 minutes, DR 
decreases below 0.5 kg/h. It showed that TD gradually decreases, meanwhile dehumidification capacity 
decreases accordingly. This phenomenon was consistent with the experimental conclusion in literature [20]. 

Thus, increasing TD can effectively improve the dehumidification efficiency. If DS still worked at this time, DR 
would be small, and it would cause a waste of electric energy. Therefore, this prediction model can describe 
the trend of dehumidification system performance in advance, and can be used as a reference for the optimal 
working condition of air internal circulation dehumidification system. 
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Figure 3: DR comparsion prediction of 4 algorithms. 
 

Conclusions 

The following conclusions were drawn in this study: 

(1) This study designs a condensation dehumidification system that takes full advantages of the 
characteristics of big temperature difference between indoor and outside in cold winter of the northeast of 
China. 

(2) Indoor temperature, relative humidity, refrigerant temperature, temperature before and after heat 
exchanger, outdoor temperature and refrigerant flow rate were selected as independent variables to model 
humidification system performance according to correlation analysis. 

(3) LSTM and GRU exhibited superior performance in prediction accuracy. They can provide optimization 
operation condition for system controls for maximize energy saving and DR and minimize indoor 
temperature drop during dehumidification process. 

This prediction could be applied to provide suitable working performance of dehumidification system before 
operation. It is used to judge whether the dehumidifier could be work or not and provide operation 
performance for users. 
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