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Abstract 

Respiration rate (RR) is a critical trait associated with animal physiology. It is commonly used to indicate heat 
stress, respiratory diseases, and welfare for dairy cattle and other animal species. However, this trait is 
difficult to collect in large-scale operations for both research and commercial settings. This study aimed to 
develop a computer vision system that accurately predicts the RR of lying Holstein cows using RGB (red, 
green, blue) and infrared images. Ninety-five videos of thirty lactating cows were collected and had a 
bounding box annotated over the lying animals’ flank areas (region of interest; ROI). An image-processing 
pipeline was developed to capture the pixel intensity variation over the ROI and use it to predict the RR. This 
process utilized Fast Fourier Transform (FFT) to capture the original signal’s frequency domain and select 
only the frequencies with the five highest power spectral densities. The inverse FFT was then performed on 
the data, and its peak count was used as the predicted RR. The Root Mean Squared Error of Prediction 
(RMSEP) and R² were 8.3 breaths/min, 15.8% (RMSEP/Mean), and 0.77, respectively. Applying FFT to the pixel 
intensity signals from RGB and infrared images was an accurate method to compute the RR of cows in 
unrestrained conditions. 
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Introduction 

Respiration rate is a critical trait associated with animal physiology. It is commonly used as an indicator of 
heat stress, respiratory diseases, and welfare for dairy cattle (Gaughan et al., 2000). So far, the most 
traditional form of calculating the RR has been the visual observation of the cows’ flank area movements. 
However, this process is labor intensive, requires specialized training, and has limited scalability, making it 
unsuitable for large-scale farm operations (Handa and Peschel, 2022). For this reason, many studies have 
developed automated technologies to assess RR in livestock, such as contact-based sensors (Eigenberg et 
al., 2002), thermal imaging from nostrils (Milan et al., 2016), and RGB (red, green, blue) imaging of abdominal 
movements (Wu et al., 2020). When comparing these methods, video-based approaches have shown a few 
advantages: lower cost, higher scalability, lower susceptibility to physical damage, and less stress caused to 
cows (Handa and Peschel, 2022). Furthermore, Wiede et al. (2017) demonstrated that using Fast Fourier 
Transform to analyze the average pixel intensity variation over the abdominal area of breathing humans 
effectively calculated their RR. However, the computer vision systems proposed for humans and cattle 
usually restrain the animals in order to reduce the noise and bad image quality captured in uncontrolled 
environments. 

In view of the technologies presented above, this study aimed to apply FFT to the average pixel intensity of 
RGB and infrared videos of unrestrained lying dairy cows to assess their respiration rates. The goal was to 
develop a simple yet robust model to predict their RR through image analysis. For this reason, the lying 
position was chosen because it makes the respiration movements more visible and is less susceptible to 
random cattle movement than standing positions. The proposed method can be valuable for the automatic 
detection of lying cattle’s RR in large-scale farming, contributing to the identification of cows under heat 
stress and with abnormal respiratory behaviors. 
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Materials and methods 

Experimental data 

The videos for this study were collected in July 2021 (from 6 pm to 6 am on days 8-9, 15-16, and 22-23) at the 
Dairy Cattle Center (DCC) of the University of Wisconsin-Madison. They were recorded using an Amcrest 
ASH42-W camera with a frame rate of 30 fps and a resolution of 2,560 pixels (horizontal) x 1,440 pixels 
(vertical). Each camera was positioned approximately 2 meters from the ground with an angle view and 
captured 1-4 resting Holstein cows. A total of 95; 30-second video segments were obtained, accounting for 
193 observations. The ground truth (observed data) was collected by visually counting the RR and 
transforming its unit to breaths/minute. 

 

Figure 1: Summary of the proposed method. Example of an image captured for cows (A) and the annotations made 
(B). Average pixel intensity variation over the annotated region of interest (C). Power spectral density of each 
frequency in the data after performing Fast Fourier Transform (FFT), with the selected frequencies in orange 
(D). Denoised signal after filtering (E) and the peak count performed to calculate the respiration rate (F). 

 

Image and signal processing 

After collecting the videos, one frame from each recording was extracted. These were then exported to VGG 
Image Annotator, through which a rectangular bounding box was annotated over the part of the cows’ flank 
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areas (region of interest; ROI) where respiration could be observed. The videos were imported into Python 
using the cv2 library, and the annotated ROIs were captured throughout their n frames. Then, the average 
pixel intensity for each frame was calculated by extracting the mean pixel intensity of each image channel 
(R, G, B) per frame, adding these three values, and then dividing the result by three. Figure 1 shows a summary 
of the processing pipeline. 

Fast Fourier Transform was applied to get the frequency domain of the pixel intensity’s 2D signal (bit 
depth/frame). Two pre-processing steps were employed to clean the signal noise before computing the final 
RR. First, since healthy and severely heat-stressed cows’ respiration rates usually lay between 26 and 120 
breaths/minute (Becker et al., 2020), only the frequencies (Hz) between one-third and twice the video length 
were selected. Secondly, considering the power spectral density (PSD, W/Hz) outlines the most prominent 
frequencies in a signal, only the frequencies with the top 5 PSD values within the limited dataset were 
selected. Finally, Inverse Fast Fourier Transform was performed on the cleaned data to return it to its original 
unit (bit depth/frame), and the SciPy library was used to count the peaks on the resulting signal. The peak 
count was the predicted respiration rate (breaths/minute). 

We split our dataset into three different training and testing groups in order to define the optimal set of the 
top n PSD values to select the respiration-related frequencies. In each split, the training set had all the 
observations from 20 cows, and the testing set had all the observations from the remaining 10 cows. To test 
the potential n values, the top n PSD values were considered hyperparameters, and we searched for n = 50, 
25, 13, 5, 3, 1, where n = 50, for example, means the top 50 values of the PSD. The top n PSD values were 
tested for each training set, and the RMSEP and R2 were calculated for each training set. The n value that 
yielded the best results (lower RMSEP and higher R2) was then validated in the testing set. 

Model assessment 

After collecting the predicted respiration rates, z-scores were calculated to evaluate if there were any 
significantly outlying results within the data. By doing so, one video appeared to be an outlier, with a z-score 
greater than 5 (p < .00001). This video was removed from the model’s analyses because, after rewatching it, 
it became evident that the atypical error was due to a bright light beam flashed in the camera over the ROI 
of the lying cows. For this reason, the dataset for assessing the model’s performance comprised 94 videos 
and 191 observations. The metrics used for its evaluation were the coefficient of determination (R2) and the 
Root Mean Squared Error of Prediction (RMSEP). 

 

Results and discussion 

After using training and testing sets to analyze how many top n PSD values must be selected to capture the 
RR most accurately, it was determined that the top 5 values yielded the best predictions across all different 
testing sets. These results can be seen in Table 1, where it is evident that the top 5 PSD values had the highest 
R2 and lowest RMSEP for each dataset. Hence, the data was filtered, and only the five most prominent 
frequencies were selected to compose the cleaned signal, as shown in Figure 2. 
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Table 1: Model performance metrics for every top n PSD value tested in each different testing and training set 

 
aRoot Mean Squared Error of Prediction (breaths/minute) 
abTraining set with all observations of 20 cows 
bTesting set with all observations of 10 cows 
cTotal number of observations (videos) 

 

Figure 2: PSD vs. Frequencies - selected (orange) and disregarded (blue) frequencies for the inverse FFT 
 

The original and cleaned signals for an arbitrary animal are shown in Figure 3. In most cases, the method 
could precisely identify the frequencies that compose the respiratory movements and return a clean signal 
through which it was possible to estimate the RR. Also displayed in Figure 4, the peak count performed on 
the cleaned signal with the Python function scipy.signal.find_peaks could precisely capture the animals’ 
respiratory signals. This agrees with Anishchenko et al.’s (2019) study, which used the same function to 
estimate the RR of humans through bioradar signals and also achieved satisfactory results. 
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Figure 3: Bit depth vs. Frame number for the original (left) and the inverse Fast Fourier Transformed (right, with 
counted peaks) pixel intensity signals 

 

The prediction results for the 30 dairy cows are shown in Figure 4 and Figure 5. The method’s overall 
performance had an R2 of 0.77 between the predicted and observed number of breaths of the cows over a 
30-second video segment. The Root Mean Squared Error of Prediction (RMSEP) was 8.3 breaths/minute, 
15.8% of the mean predicted respiration rate. 

When testing the precision for RGB and infrared videos (night vision), the model performed slightly better 
for RGB (R2 = 0.81) than for infrared videos (R2 = 0.74). It is important to notice that there were 79 RGB and 
112 infrared videos. These results suggest that night vision conditions imposed more challenging lighting to 
capture the breathing pattern. Nonetheless, the method still yielded great predictions and agreed with 
Wiede et al. (2017), which also demonstrated that pixel intensity monitoring in RGB images could precisely 
capture the RR. 

 

Figure 4: Observed vs. Predicted Breaths for all videos 



293  

 

Figure 5: Observed vs. Predicted Breaths for RGB and infrared videos 
 

Given that the proposed method is based on the pixel intensity variation throughout the videos, the influence 
of lighting changes and non-respiration-related movement could detrimentally affect the robustness of our 
method. As such, we analyzed a separate dataset with 170 observations, removing all annotations where 
cows moved or had any lighting disturbance over their ROI. The results, however, showed only a slight 
increase in R2 (0.79) and a decrease in the RMSEP of only 0.2 breaths/minute (from 8.3 to 8.1) when compared 
with the previous analysis, as can be seen in Figure 6. These findings suggest that our method could be robust 
enough not to be affected by the cows’ random movements in their stalls. Still, it is clear that automation to 
capture the ROI during lying time should be developed as one of the next steps to the full implementation 
of our system. 

 

Figure 6: Observed vs. Predicted Breaths for the cleaned data 
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Compared to the thermal imaging approaches, such as the one developed by Milan et al. (2016), our 
study has the benefit of operating in a less controlled environment and not depending on placing 
cameras close to the cows’ noses, which may be counter-productive in industrial settings. Regarding the 
RGB imaging method proposed by Wu et al. (2020), our model has two main advantages: (1) because it 
doesn’t rely on deep learning neural networks, it is less data-hungry and may generalize better across 
different environments and imaging conditions, which was shown by its performance with calves and 
in both RGB and Infrared videos; 
(2) it’s demonstrated to have good predictions for cows in less controlled conditions, which can allow 
for a smoother transition into industrial settings and gives it great potential for high-throughput 
phenotyping and farm management. 

 

Conclusions 

The proposed method showed robustness by having similarly great predictive performance with 
different image types and videos with and without moving cows. This approach may have some 
advantages over other technologies that share the same purpose (i.e., measure RR), for example, the 
collection of breathing patterns. Future studies could be performed to train an object detector that 
can identify the ROI of cows without needing manual annotation so that this method can be applied in 
real-world scenarios. Furthermore, using an image magnifier in the videos may also allow for better 
detection of the RR by enhancing the significance of the cow’s respiratory movements and may 
contribute to reducing the RMSEP. 
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